Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,66 @@
|
|
1 |
import torch
|
2 |
-
import spaces
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
4 |
from peft import LoraConfig, get_peft_model
|
5 |
from datasets import load_dataset
|
|
|
6 |
|
7 |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
8 |
-
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
|
11 |
-
# === 2️⃣
|
|
|
|
|
|
|
|
|
12 |
lora_config = LoraConfig(
|
13 |
-
r=8,
|
14 |
-
lora_alpha=32,
|
15 |
-
lora_dropout=0.1,
|
16 |
bias="none",
|
17 |
-
target_modules=["q_proj", "v_proj"],
|
18 |
)
|
|
|
19 |
|
20 |
-
# ===
|
21 |
-
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr",
|
22 |
-
|
23 |
|
|
|
24 |
def tokenize_function(examples):
|
25 |
return tokenizer(examples["text"], truncation=True, max_length=512)
|
26 |
|
27 |
-
tokenized_datasets =
|
28 |
|
29 |
-
# ===
|
30 |
-
#
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
training_args = TrainingArguments(
|
35 |
output_dir="./mistral_lora",
|
36 |
-
per_device_train_batch_size=1,
|
37 |
-
gradient_accumulation_steps=16,
|
38 |
-
learning_rate=5e-4,
|
39 |
-
num_train_epochs=1,
|
40 |
-
max_steps=max_steps, # max_steps parametresini ekliyoruz
|
41 |
save_steps=500,
|
42 |
save_total_limit=2,
|
43 |
logging_dir="./logs",
|
44 |
logging_steps=10,
|
45 |
optim="adamw_torch",
|
46 |
-
no_cuda=True,
|
47 |
)
|
48 |
|
49 |
-
|
50 |
-
# === 5️⃣ GPU BAŞLATMA VE EĞİTİM ===
|
51 |
-
@spaces.GPU
|
52 |
def train_model():
|
53 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
-
|
55 |
-
# Modeli burada yükle
|
56 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to(device)
|
57 |
-
model = get_peft_model(model, lora_config)
|
58 |
-
|
59 |
-
# TrainingArguments burada tanımlandı!
|
60 |
-
training_args = TrainingArguments(
|
61 |
-
output_dir="./mistral_lora",
|
62 |
-
per_device_train_batch_size=1,
|
63 |
-
gradient_accumulation_steps=16,
|
64 |
-
learning_rate=5e-4,
|
65 |
-
num_train_epochs=1,
|
66 |
-
save_steps=500,
|
67 |
-
save_total_limit=2,
|
68 |
-
logging_dir="./logs",
|
69 |
-
logging_steps=10,
|
70 |
-
optim="adamw_torch",
|
71 |
-
)
|
72 |
-
|
73 |
trainer = Trainer(
|
74 |
model=model,
|
75 |
args=training_args,
|
76 |
train_dataset=tokenized_datasets,
|
77 |
)
|
78 |
trainer.train()
|
79 |
-
return "✅ Model Eğitimi Tamamlandı!"
|
80 |
-
|
81 |
|
82 |
-
#
|
83 |
-
if __name__ == "__main__":
|
84 |
-
train_model() # Eğitimi başlat
|
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
5 |
+
import gradio as gr
|
6 |
|
7 |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
8 |
+
MODEL_NAME = "mistralai/Mistral-7B-v0.1" # Hugging Face model adı
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
|
11 |
+
# === 2️⃣ CPU OPTİMİZASYONU ===
|
12 |
+
torch_dtype = torch.float32 # CPU için uygun dtype
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
|
14 |
+
|
15 |
+
# === 3️⃣ LoRA AYARLARI ===
|
16 |
lora_config = LoraConfig(
|
17 |
+
r=8,
|
18 |
+
lora_alpha=32,
|
19 |
+
lora_dropout=0.1,
|
20 |
bias="none",
|
21 |
+
target_modules=["q_proj", "v_proj"],
|
22 |
)
|
23 |
+
model = get_peft_model(model, lora_config)
|
24 |
|
25 |
+
# === 4️⃣ VERİ SETİ ===
|
26 |
+
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # trust_remote_code=True
|
27 |
+
subset = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset seçiyoruz (10.000 örnek)
|
28 |
|
29 |
+
# === 5️⃣ TOKENLEŞTİRME FONKSİYONU ===
|
30 |
def tokenize_function(examples):
|
31 |
return tokenizer(examples["text"], truncation=True, max_length=512)
|
32 |
|
33 |
+
tokenized_datasets = subset.map(tokenize_function, batched=True)
|
34 |
|
35 |
+
# === 6️⃣ EĞİTİM AYARLARI ===
|
36 |
+
# Eğitimde kaç adım olduğunu hesaplayalım
|
37 |
+
train_size = len(tokenized_datasets) # 10,000 örnek
|
38 |
+
batch_size = 1 # Batch size 1
|
39 |
+
num_epochs = 1 # 1 epoch eğitimi
|
40 |
+
max_steps = (train_size // batch_size) * num_epochs # max_steps hesapla
|
41 |
|
42 |
training_args = TrainingArguments(
|
43 |
output_dir="./mistral_lora",
|
44 |
+
per_device_train_batch_size=1,
|
45 |
+
gradient_accumulation_steps=16,
|
46 |
+
learning_rate=5e-4,
|
47 |
+
num_train_epochs=1,
|
48 |
+
max_steps=max_steps, # Buraya max_steps parametresini ekliyoruz
|
49 |
save_steps=500,
|
50 |
save_total_limit=2,
|
51 |
logging_dir="./logs",
|
52 |
logging_steps=10,
|
53 |
optim="adamw_torch",
|
54 |
+
no_cuda=True, # GPU kullanılmıyor
|
55 |
)
|
56 |
|
57 |
+
# === 7️⃣ MODEL EĞİTİMİ ===
|
|
|
|
|
58 |
def train_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
trainer = Trainer(
|
60 |
model=model,
|
61 |
args=training_args,
|
62 |
train_dataset=tokenized_datasets,
|
63 |
)
|
64 |
trainer.train()
|
|
|
|
|
65 |
|
66 |
+
train_model() # Eğitimi başlat
|
|
|
|