Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
import json | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
# Initialize the translation pipeline | |
text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) | |
# Load the JSON data from the file | |
with open('language.json', 'r') as file: | |
language_data = json.load(file) | |
# Extract language names from the JSON data | |
language_names = [entry['Language'] for entry in language_data] | |
def get_FLORES_code_from_language(language): | |
for entry in language_data: | |
if entry['Language'].lower() == language.lower(): | |
return entry['FLORES-200 code'] | |
return None | |
def translate_text(text, destination_language): | |
dest_code = get_FLORES_code_from_language(destination_language) | |
if dest_code: | |
translation = text_translator(text, src_lang="eng_Latn", tgt_lang=dest_code) | |
return translation[0]["translation_text"] | |
else: | |
return "Destination language code not found." | |
# Create and launch the Gradio interface | |
gr.close_all() | |
demo = gr.Interface( | |
fn=translate_text, | |
inputs=[ | |
gr.Textbox(label="Input text to translate", lines=6), | |
gr.Dropdown(language_names, label="Select Destination Language") | |
], | |
outputs=[gr.Textbox(label="Translated text", lines=4)], | |
title="Multi-language Translator", | |
description="This application translates any English text to multiple languages." | |
) | |
demo.launch() | |