File size: 1,481 Bytes
178a652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import requests
import os

# Function to download images from the internet
def download_images(urls, folder):
    os.makedirs(folder, exist_ok=True)
    for i, url in enumerate(urls):
        response = requests.get(url)
        with open(f"{folder}/image_{i}.jpg", "wb") as f:
            f.write(response.content)

# Function to identify bears in images using Clarifai API
def identify_bears(images_folder):
    # Replace 'YOUR_API_KEY' with your actual Clarifai API key
    API_KEY = 'YOUR_API_KEY'
    url = "https://api.clarifai.com/v2/models/c0c0ac362b03416da06ab3fa36fb58e3/outputs"

    headers = {
        "Authorization": f"Key {API_KEY}",
        "Content-Type": "application/json",
    }

    image_files = os.listdir(images_folder)
    for image_file in image_files:
        with open(f"{images_folder}/{image_file}", "rb") as f:
            response = requests.post(url, headers=headers, json={"inputs": [{"data": {"image": {"base64": f.read().hex()}}}]})

        data = response.json()
        concepts = data["outputs"][0]["data"]["concepts"]
        for concept in concepts:
            if concept["name"] in ["grizzly bear", "black bear"]:
                print(f"Image {image_file}: {concept['name']} - Probability: {concept['value']}")

# Example usage
if __name__ == "__main__":
    urls = [
        "URL_TO_BEAR_IMAGE_1",
        "URL_TO_BEAR_IMAGE_2",
        # Add more URLs as needed
    ]
    download_images(urls, "images")
    identify_bears("images")