Spaces:
Runtime error
Runtime error
Commit
·
ad29403
1
Parent(s):
80334c5
faster whisper timestamp
Browse files- README.md +9 -1
- transcription.py +63 -13
README.md
CHANGED
@@ -32,4 +32,12 @@ The user will logging using a password and user specified by me. That user and p
|
|
32 |
## Pricing
|
33 |
|
34 |
1. Calculate the fixed cost of a server running for a long period of time.
|
35 |
-
2. Check if I can use the hibernation period to save some money.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
## Pricing
|
33 |
|
34 |
1. Calculate the fixed cost of a server running for a long period of time.
|
35 |
+
2. Check if I can use the hibernation period to save some money.
|
36 |
+
|
37 |
+
## Development
|
38 |
+
|
39 |
+
- [ ] Add word time-stamp
|
40 |
+
- [ ] Add Accuracy at word level
|
41 |
+
- [ ] Add mel spectrogram?
|
42 |
+
- [ ] Add Whisper parameters to the interface
|
43 |
+
- [ ]
|
transcription.py
CHANGED
@@ -63,25 +63,66 @@ def fast_transcription(audio_file, whisper_model, language):
|
|
63 |
# Transcribe audio
|
64 |
options = dict(language=language, beam_size=5, best_of=5)
|
65 |
transcribe_options = dict(task="transcribe", **options)
|
66 |
-
|
67 |
|
68 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
segments = []
|
70 |
-
|
71 |
-
for
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
except Exception as e:
|
80 |
raise RuntimeError("Error converting video to audio")
|
81 |
|
82 |
#text from the list
|
|
|
|
|
83 |
|
84 |
-
return [str(s["start"]) + " " + s["text"] for s in segments] #pd.DataFrame(segments)
|
85 |
|
86 |
import datetime
|
87 |
|
@@ -215,4 +256,13 @@ def speech_to_text(audio_file, selected_source_lang, whisper_model, num_speakers
|
|
215 |
return df_results, system_info, save_path
|
216 |
|
217 |
except Exception as e:
|
218 |
-
raise RuntimeError("Error Running inference with local model", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Transcribe audio
|
64 |
options = dict(language=language, beam_size=5, best_of=5)
|
65 |
transcribe_options = dict(task="transcribe", **options)
|
66 |
+
segments_generator, info = model.transcribe(audio_file, **transcribe_options)
|
67 |
|
68 |
+
#segments_raw, info = model.transcribe(audio_file, **transcribe_options)
|
69 |
+
# # Convert back to original openai format
|
70 |
+
# segments = []
|
71 |
+
# i = 0
|
72 |
+
# for segment_chunk in segments_raw:
|
73 |
+
# chunk = {}
|
74 |
+
# chunk["start"] = segment_chunk.start
|
75 |
+
# chunk["end"] = segment_chunk.end
|
76 |
+
# chunk["text"] = segment_chunk.text
|
77 |
+
# segments.append(chunk)
|
78 |
+
# i += 1
|
79 |
+
# print("transcribe audio done with fast whisper")
|
80 |
segments = []
|
81 |
+
|
82 |
+
for segment in segments_generator:
|
83 |
+
segments.append(segment)
|
84 |
+
|
85 |
+
# if progress_listener is not None:
|
86 |
+
# progress_listener.on_progress(segment.end, info.duration)
|
87 |
+
# if verbose:
|
88 |
+
# print("[{}->{}] {}".format(format_timestamp(segment.start, True), format_timestamp(segment.end, True),
|
89 |
+
# segment.text))
|
90 |
+
|
91 |
+
text = " ".join([segment.text for segment in segments])
|
92 |
+
|
93 |
+
# Convert the segments to a format that is easier to serialize
|
94 |
+
whisper_segments = [{
|
95 |
+
"text": segment.text,
|
96 |
+
"start": segment.start,
|
97 |
+
"end": segment.end,
|
98 |
+
|
99 |
+
# Extra fields added by faster-whisper
|
100 |
+
"words": [{
|
101 |
+
"start": word.start,
|
102 |
+
"end": word.end,
|
103 |
+
"word": word.word,
|
104 |
+
"probability": word.probability
|
105 |
+
} for word in (segment.words if segment.words is not None else []) ]
|
106 |
+
} for segment in segments]
|
107 |
+
|
108 |
+
result = {
|
109 |
+
"segments": whisper_segments,
|
110 |
+
"text": text,
|
111 |
+
"language": info.language if info else None,
|
112 |
+
|
113 |
+
# Extra fields added by faster-whisper
|
114 |
+
"language_probability": info.language_probability if info else None,
|
115 |
+
"duration": info.duration if info else None
|
116 |
+
}
|
117 |
+
|
118 |
except Exception as e:
|
119 |
raise RuntimeError("Error converting video to audio")
|
120 |
|
121 |
#text from the list
|
122 |
+
|
123 |
+
return result
|
124 |
|
125 |
+
#return [str(s["start"]) + " " + s["text"] for s in segments] #pd.DataFrame(segments)
|
126 |
|
127 |
import datetime
|
128 |
|
|
|
256 |
return df_results, system_info, save_path
|
257 |
|
258 |
except Exception as e:
|
259 |
+
raise RuntimeError("Error Running inference with local model", e)
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
#######################################################################
|
264 |
+
|
265 |
+
def fast_whisper(audio_file, whisper_model="large_v2", language="es"):
|
266 |
+
|
267 |
+
|
268 |
+
return out
|