Spaces:
Runtime error
Runtime error
Commit
路
d49f35d
1
Parent(s):
9dba6bb
fixing error and including example file
Browse files
README.md
CHANGED
@@ -45,6 +45,8 @@ The user will logging using a password and user specified by me. That user and p
|
|
45 |
- [ ] Obtain txt with Diarization.
|
46 |
- [ ] Obtain plain txt with segments.
|
47 |
- [ ] Introduce POS.
|
|
|
48 |
|
49 |
|
50 |
-
Introduce Tab for analysis including POS. Maybe it would be great to have a visualizer with the timestamps and other features in Streamlit. Quizas correcciones.
|
|
|
|
45 |
- [ ] Obtain txt with Diarization.
|
46 |
- [ ] Obtain plain txt with segments.
|
47 |
- [ ] Introduce POS.
|
48 |
+
- [ ] Optional Preprocessing
|
49 |
|
50 |
|
51 |
+
Introduce Tab for analysis including POS. Maybe it would be great to have a visualizer with the timestamps and other features in Streamlit. Quizas correcciones.
|
52 |
+
|
app.py
CHANGED
@@ -78,7 +78,7 @@ def transcribeWhisperX(audiofile, model, language, patiente,
|
|
78 |
file_path = Path(nombre_archivo)
|
79 |
writter_args = {"highlight_words": None, "max_line_count": None, "max_line_width": None}
|
80 |
srt_writer = get_writer("srt", Path("."))
|
81 |
-
srt_writer(result_aligned
|
82 |
|
83 |
# with open(
|
84 |
# nombre_archivo,
|
@@ -111,7 +111,7 @@ transcribeI = gr.Interface(
|
|
111 |
"Esta p谩gina realiza una transcripci贸n de audio utilizando Whisper. Adem谩s a帽ade varias mejoras y utilidades: a) Preprocesamiento del audio y limpieza de ruido ambiental, b) Conversi贸n de los archivos de audio a un formato compatible con Whisper, c) C谩lculo de la marca temporal palabra por palabra, d) C谩lculo del nivel de seguridad de la transcripci贸n, e) Conversi贸n del resultado a .csv, .srt y ass.\n"
|
112 |
),
|
113 |
allow_flagging="never",
|
114 |
-
|
115 |
|
116 |
)
|
117 |
|
|
|
78 |
file_path = Path(nombre_archivo)
|
79 |
writter_args = {"highlight_words": None, "max_line_count": None, "max_line_width": None}
|
80 |
srt_writer = get_writer("srt", Path("."))
|
81 |
+
srt_writer(result_aligned, str(file_path.stem), writter_args)
|
82 |
|
83 |
# with open(
|
84 |
# nombre_archivo,
|
|
|
111 |
"Esta p谩gina realiza una transcripci贸n de audio utilizando Whisper. Adem谩s a帽ade varias mejoras y utilidades: a) Preprocesamiento del audio y limpieza de ruido ambiental, b) Conversi贸n de los archivos de audio a un formato compatible con Whisper, c) C谩lculo de la marca temporal palabra por palabra, d) C谩lculo del nivel de seguridad de la transcripci贸n, e) Conversi贸n del resultado a .csv, .srt y ass.\n"
|
112 |
),
|
113 |
allow_flagging="never",
|
114 |
+
examples=[[None, "Espana 04 - Video 01 - extracto 2 min.wav", "large-v2"]]
|
115 |
|
116 |
)
|
117 |
|