Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from transformers import AutoTokenizer, CLIPProcessor, ViTFeatureExtractor | |
from medclip.modeling_hybrid_clip import FlaxHybridCLIP | |
def load_model(): | |
model = FlaxHybridCLIP.from_pretrained("flax-community/medclip-roco") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
return model, processor | |
def load_image_embeddings(): | |
embeddings_df = pd.read_pickle('image_embeddings.pkl') | |
image_embeds = np.stack(embeddings_df['image_embedding']) | |
image_files = np.asarray(embeddings_df['files'].tolist()) | |
return image_files, image_embeds | |
# def app(): | |
k = 5 | |
image_list, image_embeddings = load_image_embeddings() | |
model, processor = load_model() | |
query = st.text_input("Search:") | |
if st.button("Search"): | |
st.write(f"Searching our image database for {query}...") | |
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True) | |
query_embedding = model.get_text_features(**inputs) | |
query_embedding = np.asarray(query_embedding) | |
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True) | |
dot_prod = np.sum(np.multiply(query_embedding, image_embeddings), axis=1) | |
matching_images = image_list[dot_prod.argsort()[-k:]] | |
st.write(f"matching images: {matching_images}") | |