medclip-roco / app.py
kaushalya's picture
Update readme
f15bc50
raw
history blame
2.13 kB
import streamlit as st
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, CLIPProcessor
from medclip.modeling_hybrid_clip import FlaxHybridCLIP
@st.cache(allow_output_mutation=True)
def load_model():
model = FlaxHybridCLIP.from_pretrained("flax-community/medclip-roco")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
return model, processor
@st.cache(allow_output_mutation=True)
def load_image_embeddings():
embeddings_df = pd.read_pickle('feature_store/image_embeddings_large.pkl')
image_embeds = np.stack(embeddings_df['image_embedding'])
image_files = np.asarray(embeddings_df['files'].tolist())
return image_files, image_embeds
k = 5
img_dir = './images'
st.title("MedCLIP 🩺📎")
st.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the
[Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""")
st.markdown("""Example queries:
* `ultrasound scans`
* `pathology`
* `pancreatic carcinoma`""")
image_list, image_embeddings = load_image_embeddings()
model, processor = load_model()
query = st.text_input("Enter your query here:")
if st.button("Search"):
st.write(f"Searching our image database for {query}...")
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
query_embedding = model.get_text_features(**inputs)
query_embedding = np.asarray(query_embedding)
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True)
dot_prod = np.sum(np.multiply(query_embedding, image_embeddings), axis=1)
topk_images = dot_prod.argsort()[-k:]
matching_images = image_list[topk_images]
top_scores = 1. - dot_prod[topk_images]
#show images
for img_path, score in zip(matching_images, top_scores):
img = plt.imread(os.path.join(img_dir, img_path))
st.image(img)
st.write(f"{img_path} ({score:.2f})", help="score")