Spaces:
Running
Running
Add sidebar
Browse files
app.py
CHANGED
@@ -22,35 +22,52 @@ def load_image_embeddings():
|
|
22 |
k = 5
|
23 |
img_dir = './images'
|
24 |
|
25 |
-
st.
|
26 |
-
st.image("./assets/logo.png", width=100)
|
27 |
-
st.
|
|
|
28 |
[Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""")
|
29 |
-
st.markdown("""Example queries:
|
30 |
-
* `ultrasound scans
|
31 |
-
* `pathology
|
32 |
-
* `pancreatic carcinoma
|
33 |
-
* `PET scan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
image_list, image_embeddings = load_image_embeddings()
|
36 |
model, processor = load_model()
|
37 |
|
38 |
query = st.text_input("Enter your query here:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
for img_path, score in zip(matching_images, top_scores):
|
53 |
-
img = plt.imread(os.path.join(img_dir, img_path))
|
54 |
-
st.image(img, width=300)
|
55 |
-
st.write(f"{img_path} ({score:.2f})", help="score")
|
56 |
-
|
|
|
22 |
k = 5
|
23 |
img_dir = './images'
|
24 |
|
25 |
+
st.sidebar.header("MedCLIP")
|
26 |
+
st.sidebar.image("./assets/logo.png", width=100)
|
27 |
+
st.sidebar.empty()
|
28 |
+
st.sidebar.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the
|
29 |
[Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""")
|
30 |
+
st.sidebar.markdown("""Example queries:
|
31 |
+
* `ultrasound scans`π
|
32 |
+
* `pathology`π
|
33 |
+
* `pancreatic carcinoma`π
|
34 |
+
* `PET scan`π""")
|
35 |
+
k_slider = st.sidebar.slider("Number of images", min_value=1, max_value=10, value=5)
|
36 |
+
st.sidebar.markdown("Kaushalya Madhawa, 2021")
|
37 |
+
|
38 |
+
st.title("MedCLIP π©Ί")
|
39 |
+
# st.image("./assets/logo.png", width=100)
|
40 |
+
# st.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the
|
41 |
+
# [Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""")
|
42 |
+
# st.markdown("""Example queries:
|
43 |
+
# * `ultrasound scans`π
|
44 |
+
# * `pathology`π
|
45 |
+
# * `pancreatic carcinoma`π
|
46 |
+
# * `PET scan`π""")
|
47 |
|
48 |
image_list, image_embeddings = load_image_embeddings()
|
49 |
model, processor = load_model()
|
50 |
|
51 |
query = st.text_input("Enter your query here:")
|
52 |
+
dot_prod = None
|
53 |
+
|
54 |
+
if st.button("Search") or k_slider:
|
55 |
+
if len(query)==0:
|
56 |
+
st.write("Please enter a valid search query")
|
57 |
+
else:
|
58 |
+
with st.spinner(f"Searching ROCO test set for {query}..."):
|
59 |
+
k = k_slider
|
60 |
+
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
|
61 |
|
62 |
+
query_embedding = model.get_text_features(**inputs)
|
63 |
+
query_embedding = np.asarray(query_embedding)
|
64 |
+
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True)
|
65 |
+
dot_prod = np.sum(np.multiply(query_embedding, image_embeddings), axis=1)
|
66 |
+
topk_images = dot_prod.argsort()[-k:]
|
67 |
+
matching_images = image_list[topk_images]
|
68 |
+
top_scores = 1. - dot_prod[topk_images]
|
69 |
+
#show images
|
70 |
+
for img_path, score in zip(matching_images, top_scores):
|
71 |
+
img = plt.imread(os.path.join(img_dir, img_path))
|
72 |
+
st.image(img, width=300)
|
73 |
+
st.write(f"{img_path} ({score:.2f})", help="score")
|
|
|
|
|
|
|
|
|
|