# If point cloud range is changed, the models should also change their point # cloud range accordingly point_cloud_range = [-50, -50, -5, 50, 50, 3] # For nuScenes we usually do 10-class detection class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] dataset_type = 'NuScenesDataset_eval_modified' data_root = 'data/nuscenes/' # Input modality for nuScenes dataset, this is consistent with the submission # format which requires the information in input_modality. input_modality = dict( use_lidar=True, use_camera=False, use_radar=False, use_map=False, use_external=False) file_client_args = dict(backend='disk') # Uncomment the following if use ceph or other file clients. # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # for more details. # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/nuscenes/': 's3://nuscenes/nuscenes/', # 'data/nuscenes/': 's3://nuscenes/nuscenes/' # })) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, file_client_args=file_client_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict( type='GlobalRotScaleTrans', rot_range=[-0.3925, 0.3925], scale_ratio_range=[0.95, 1.05], translation_std=[0, 0, 0]), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='PointShuffle'), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, file_client_args=file_client_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, file_client_args=file_client_args), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'nuscenes_infos_train.pkl', pipeline=train_pipeline, classes=class_names, modality=input_modality, test_mode=False, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR'), val=dict( type=dataset_type, ann_file=data_root + 'nuscenes_infos_val.pkl', pipeline=test_pipeline, classes=class_names, modality=input_modality, test_mode=True, box_type_3d='LiDAR'), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'nuscenes_infos_val.pkl', pipeline=test_pipeline, classes=class_names, modality=input_modality, test_mode=True, box_type_3d='LiDAR')) # For nuScenes dataset, we usually evaluate the model at the end of training. # Since the models are trained by 24 epochs by default, we set evaluation # interval to be 24. Please change the interval accordingly if you do not # use a default schedule. evaluation = dict(interval=24, pipeline=eval_pipeline)