File size: 866 Bytes
0bb2075
 
d2c17dc
0bb2075
954ecdd
 
0bb2075
 
954ecdd
5fae1fd
954ecdd
0bb2075
ddc5285
 
954ecdd
 
 
95f34c2
954ecdd
0bb2075
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import warnings
warnings.filterwarnings("ignore")
import extract_info as ei
import glob
import gradio as gr

title = "Reciepts Information Extraction using LayoutLMv3 Model"
description = "Reciepts information extraction - Here we use Microsoft's LayoutLMv3 trained on WildReceipt Dataset to predict the keys and values. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."

css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=ei.main, 
                     inputs=gr.Image(type="pil"), 
                     outputs=gr.Image(type="pil", label="annotated image"),
                     title=title,
                     description=description,
                     css=css,
                     analytics_enabled = True)

iface.launch(inline=False, share=True, debug=False)