kaz9112 commited on
Commit
2cc611e
·
1 Parent(s): a80c10a

fix add nltk download

Browse files
Files changed (2) hide show
  1. app.py +4 -0
  2. func.py +4 -0
app.py CHANGED
@@ -7,6 +7,10 @@ import tensorflow as tf
7
  from tensorflow.keras.models import Sequential, Model
8
  from tensorflow.keras.layers import Embedding, TextVectorization, GlobalAveragePooling1D, Input, LSTM, GRU, Dropout, Dense
9
 
 
 
 
 
10
  from func import TextProcess, Label, TextProcess2
11
 
12
  lda_model_inf = gensim.models.LdaModel.load('lda.model')
 
7
  from tensorflow.keras.models import Sequential, Model
8
  from tensorflow.keras.layers import Embedding, TextVectorization, GlobalAveragePooling1D, Input, LSTM, GRU, Dropout, Dense
9
 
10
+ import nltk
11
+ import func
12
+ nltk.download('wordnet')
13
+ nltk.download('punkt')
14
  from func import TextProcess, Label, TextProcess2
15
 
16
  lda_model_inf = gensim.models.LdaModel.load('lda.model')
func.py CHANGED
@@ -1,5 +1,6 @@
1
  import re
2
  import string
 
3
  from nltk.tokenize import word_tokenize
4
  import pandas as pd
5
  import numpy as np
@@ -9,6 +10,9 @@ import string
9
  from nltk.tokenize import word_tokenize
10
  from nltk.stem.porter import *
11
 
 
 
 
12
  # A Function to use in the dataframe
13
  kamus = pd.read_csv('kamus.txt', sep=" ", header=None,names=['slang', 'fix'])
14
  slang_list = kamus['slang'].tolist()
 
1
  import re
2
  import string
3
+ import nltk
4
  from nltk.tokenize import word_tokenize
5
  import pandas as pd
6
  import numpy as np
 
10
  from nltk.tokenize import word_tokenize
11
  from nltk.stem.porter import *
12
 
13
+ nltk.download('wordnet')
14
+ nltk.download('punkt')
15
+
16
  # A Function to use in the dataframe
17
  kamus = pd.read_csv('kamus.txt', sep=" ", header=None,names=['slang', 'fix'])
18
  slang_list = kamus['slang'].tolist()