Spaces:
Running
Running
File size: 6,506 Bytes
36f0d8c 6c484ef 2fa2b7b 36f0d8c 2fa2b7b 36f0d8c 2a16fc9 36f0d8c 1adf3a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import requests
import datadog_api_client
from PIL import Image
def check_liveness(frame):
url = "http://127.0.0.1:8080/check_liveness"
file = {'file': open(frame, 'rb')}
r = requests.post(url=url, files=file)
result = r.json().get('face_state').get('result')
html = None
faces = None
if r.json().get('face_state').get('is_not_front') is not None:
liveness_score = r.json().get('face_state').get('liveness_score')
eye_closed = r.json().get('face_state').get('eye_closed')
is_boundary_face = r.json().get('face_state').get('is_boundary_face')
is_not_front = r.json().get('face_state').get('is_not_front')
is_occluded = r.json().get('face_state').get('is_occluded')
is_small = r.json().get('face_state').get('is_small')
luminance = r.json().get('face_state').get('luminance')
mouth_opened = r.json().get('face_state').get('mouth_opened')
quality = r.json().get('face_state').get('quality')
html = ("<table>"
"<tr>"
"<th>Face State</th>"
"<th>Value</th>"
"</tr>"
"<tr>"
"<td>Result</td>"
"<td>{result}</td>"
"</tr>"
"<tr>"
"<td>Liveness Score</td>"
"<td>{liveness_score}</td>"
"</tr>"
"<tr>"
"<td>Quality</td>"
"<td>{quality}</td>"
"</tr>"
"<tr>"
"<td>Luminance</td>"
"<td>{luminance}</td>"
"</tr>"
"<tr>"
"<td>Is Small</td>"
"<td>{is_small}</td>"
"</tr>"
"<tr>"
"<td>Is Boundary</td>"
"<td>{is_boundary_face}</td>"
"</tr>"
"<tr>"
"<td>Is Not Front</td>"
"<td>{is_not_front}</td>"
"</tr>"
"<tr>"
"<td>Face Occluded</td>"
"<td>{is_occluded}</td>"
"</tr>"
"<tr>"
"<td>Eye Closed</td>"
"<td>{eye_closed}</td>"
"</tr>"
"<tr>"
"<td>Mouth Opened</td>"
"<td>{mouth_opened}</td>"
"</tr>"
"</table>".format(liveness_score=liveness_score, quality=quality, luminance=luminance, is_small=is_small, is_boundary_face=is_boundary_face,
is_not_front=is_not_front, is_occluded=is_occluded, eye_closed=eye_closed, mouth_opened=mouth_opened, result=result))
else:
html = ("<table>"
"<tr>"
"<th>Face State</th>"
"<th>Value</th>"
"</tr>"
"<tr>"
"<td>Result</td>"
"<td>{result}</td>"
"</tr>"
"</table>".format(result=result))
try:
image = Image.open(frame)
for face in r.json().get('faces'):
x1 = face.get('x1')
y1 = face.get('y1')
x2 = face.get('x2')
y2 = face.get('y2')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
if faces is None:
faces = face_image
else:
new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80))
new_image.paste(faces,(0,0))
new_image.paste(face_image,(faces.width + 10, 0))
faces = new_image.copy()
except:
pass
return [faces, html]
with gr.Blocks() as demo:
gr.Markdown(
"""
# KBY-AI - Face Liveness Detecion
We offer SDKs for face recognition, liveness detection(anti-spoofing) and ID card recognition.
We also specialize in providing outsourcing services with a variety of technical stacks like AI(Computer Vision/Machine Learning), Mobile apps, and web apps.
##### KYC Verification Demo - https://github.com/kby-ai/KYC-Verification-Demo-Android
##### ID Capture Web Demo - https://id-document-recognition-react-alpha.vercel.app
##### Documentation - Help Center - https://docs.kby-ai.com
"""
)
with gr.TabItem("Face Liveness Detection"):
gr.Markdown(
"""
##### Docker Hub - https://hub.docker.com/r/kbyai/face-liveness-detection
```bash
sudo docker pull kbyai/face-liveness-detection:latest
sudo docker run -e LICENSE="xxxxx" -p 8080:8080 -p 9000:9000 kbyai/face-liveness-detection:latest
```
"""
)
with gr.Row():
with gr.Column():
live_image_input = gr.Image(type='filepath')
gr.Examples(['live_examples/1.jpg', 'live_examples/2.jpg', 'live_examples/3.jpg', 'live_examples/4.jpg'],
inputs=live_image_input)
check_liveness_button = gr.Button("Check Liveness")
with gr.Column():
liveness_face_output = gr.Image(type="pil").style(height=150)
livness_result_output = gr.HTML()
check_liveness_button.click(check_liveness, inputs=live_image_input, outputs=[liveness_face_output, livness_result_output])
gr.HTML('<a href="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceLivenessDetection&countColor=%23263759"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceLivenessDetection&countColor=%23263759&label=VISITORS&countColor=%23263759" /></a>')
demo.launch(server_name="0.0.0.0", server_port=7860) |