import gradio as gr import requests import datadog_api_client from gradio.components import Image from PIL import Image as PILImage, ImageDraw, ImageFont # This import may be needed if you're processing images from PIL import Image def compare_face(frame1, frame2): url = "http://127.0.0.1:8080/compare_face" files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')} r = requests.post(url=url, files=files) html = None faces = None compare_result = r.json().get('compare_result') compare_similarity = r.json().get('compare_similarity') html = ("" "" "" "" "" "" "" "" "" "" "" "" "" "
Compare ResultValue
Result{compare_result}
Similarity{compare_similarity}
".format(compare_result=compare_result, compare_similarity=compare_similarity)) try: image1 = Image.open(frame1) image2 = Image.open(frame2) face1 = None face2 = None if r.json().get('face1') is not None: face = r.json().get('face1') x1 = face.get('x1') y1 = face.get('y1') x2 = face.get('x2') y2 = face.get('y2') if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= image1.width: x2 = image1.width - 1 if y2 >= image1.height: y2 = image1.height - 1 face1 = image1.crop((x1, y1, x2, y2)) face_image_ratio = face1.width / float(face1.height) resized_w = int(face_image_ratio * 150) resized_h = 150 face1 = face1.resize((int(resized_w), int(resized_h))) if r.json().get('face2') is not None: face = r.json().get('face2') x1 = face.get('x1') y1 = face.get('y1') x2 = face.get('x2') y2 = face.get('y2') if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= image2.width: x2 = image2.width - 1 if y2 >= image2.height: y2 = image2.height - 1 face2 = image2.crop((x1, y1, x2, y2)) face_image_ratio = face2.width / float(face2.height) resized_w = int(face_image_ratio * 150) resized_h = 150 face2 = face2.resize((int(resized_w), int(resized_h))) if face1 is not None and face2 is not None: new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80)) new_image.paste(face1,(0,0)) new_image.paste(face2,(face1.width + 10, 0)) faces = new_image.copy() elif face1 is not None and face2 is None: new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80)) new_image.paste(face1,(0,0)) faces = new_image.copy() elif face1 is None and face2 is not None: new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80)) new_image.paste(face2,(face2.width + 10, 0)) faces = new_image.copy() except: pass return [faces, html] with gr.Blocks() as demo: gr.Markdown( """ # KBY-AI - Face Recognition We offer SDKs for face recognition, liveness detection(anti-spoofing) and ID card recognition.

ID Document Liveness Detection - Linux - https://web.kby-ai.com

##### KYC Verification Demo - https://github.com/kby-ai/KYC-Verification-Demo-Android ##### ID Capture Web Demo - https://id-document-recognition-react-alpha.vercel.app ##### Documentation - Help Center - https://docs.kby-ai.com """ ) with gr.TabItem("Face Recognition"): gr.Markdown( """ ##### Docker Hub - https://hub.docker.com/r/kbyai/face-recognition ```bash sudo docker pull kbyai/face-recognition:latest sudo docker run -e LICENSE="xxxxx" -p 8081:8080 -p 9001:9000 kbyai/face-recognition:latest ``` """ ) with gr.Row(): with gr.Column(): compare_face_input1 = gr.Image(type='filepath') gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/5.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'], inputs=compare_face_input1) compare_face_button = gr.Button("Compare Face") with gr.Column(): compare_face_input2 = gr.Image(type='filepath') gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/6.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'], inputs=compare_face_input2) with gr.Column(): compare_face_output = gr.Image(type="pil").style(height=150) compare_result_output = gr.HTML(label='Result') compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_face_output, compare_result_output]) gr.HTML('') demo.launch(server_name="0.0.0.0", server_port=7860, share=True)