import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration from langchain.memory import ConversationBufferMemory import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load all three Flan-T5 models (small, base, large) models = { "small": T5ForConditionalGeneration.from_pretrained("google/flan-t5-small").to(device), "base": T5ForConditionalGeneration.from_pretrained("google/flan-t5-base").to(device), "large": T5ForConditionalGeneration.from_pretrained("google/flan-t5-large").to(device) } # Load the tokenizer (same tokenizer for all models) tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") # Set up conversational memory using LangChain's ConversationBufferMemory memory = ConversationBufferMemory() # Define the chatbot function with memory and model size selection def chat_with_flan(input_text, model_size): # Retrieve conversation history and append the current user input conversation_history = memory.load_memory_variables({})['history'] # Combine the history with the current user input full_input = f"{conversation_history}\nUser: {input_text}\nAssistant:" # Tokenize the input for the model input_ids = tokenizer.encode(full_input, return_tensors="pt") # Get the model based on the selected size model = models[model_size] # Generate the response from the model outputs = model.generate(input_ids, max_length=200, num_return_sequences=1) # Decode the model output response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update the memory with the user input and model response memory.save_context({"input": input_text}, {"output": response}) return conversation_history + f"\nUser: {input_text}\nAssistant: {response}" # Set up the Gradio interface with the input box below the output box with gr.Blocks() as interface: chatbot_output = gr.Textbox(label="Conversation", lines=15, placeholder="Chat history will appear here...", interactive=False) # Add the instruction message above the input box gr.Markdown("**Instructions:** Press `Shift + Enter` to submit, and `Enter` for a new line.") # Add a dropdown for selecting the model size (small, base, large) model_selector = gr.Dropdown(choices=["small", "base", "large"], value="base", label="Select Model Size") # Input box for the user user_input = gr.Textbox(label="Your Input", placeholder="Type your message here...", lines=2, show_label=True) # Define the function to update the chat based on selected model def update_chat(input_text, model_size): updated_history = chat_with_flan(input_text, model_size) return updated_history, "" # Submit when pressing Enter user_input.submit(update_chat, inputs=[user_input, model_selector], outputs=[chatbot_output, user_input]) # Layout for model selector and chatbot UI gr.Row([model_selector]) # Launch the Gradio app interface.launch()