import gradio as gr import numpy as np import cv2 def transform_cv2(frame, transform): if transform == "cartoon": # prepare color img_color = cv2.pyrDown(cv2.pyrDown(frame)) for _ in range(6): img_color = cv2.bilateralFilter(img_color, 9, 9, 7) img_color = cv2.pyrUp(cv2.pyrUp(img_color)) # prepare edges img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) img_edges = cv2.adaptiveThreshold( cv2.medianBlur(img_edges, 7), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2, ) img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) # combine color and edges img = cv2.bitwise_and(img_color, img_edges) return img elif transform == "edges": # perform edge detection img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR) return img else: return np.flipud(frame) css=""".my-group {max-width: 500px !important; max-height: 500px !important;} .my-column {display: flex !important; justify-content: center !important; align-items: center !important};""" with gr.Blocks(css=css) as demo: with gr.Column(elem_classes=["my-column"]): with gr.Group(elem_classes=["my-group"]): transform = gr.Dropdown(choices=["cartoon", "edges", "flip"], value="flip", label="Transformation") input_img = gr.Image(sources=["webcam"], type="numpy", streaming=True) input_img.stream(transform_cv2, [input_img, transform], [input_img], time_limit=30, stream_every=0.1) demo.launch()