kedimestan's picture
Update app.py
041db94 verified
import gradio as gr
import sahi
import torch
from ultralyticsplus import YOLO, render_model_output
# Download sample images
sahi.utils.file.download_from_url(
"https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
"highway.jpg",
)
sahi.utils.file.download_from_url(
"https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg",
"small-vehicles1.jpeg",
)
sahi.utils.file.download_from_url(
"https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/zidane.jpg",
"zidane.jpg",
)
# List of YOLOv8 segmentation models
model_names = [
"yolov8n-seg.pt",
"yolov8s-seg.pt",
"yolov8m-seg.pt",
"yolov8l-seg.pt",
"yolov8x-seg.pt",
]
current_model_name = "yolov8m-seg.pt"
model = YOLO(current_model_name)
def yolov8_inference(
image: gr.Image = None,
model_name: gr.Dropdown = None,
image_size: gr.Slider = 640,
conf_threshold: gr.Slider = 0.25,
iou_threshold: gr.Slider = 0.45,
):
"""
YOLOv8 inference function to return masks and label names for each detected object
Args:
image: Input image
model_name: Name of the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Object masks, coordinates, and label names
"""
global model
global current_model_name
# Check if a new model is selected
if model_name != current_model_name:
model = YOLO(model_name)
current_model_name = model_name
# Set the confidence and IOU thresholds
model.overrides["conf"] = conf_threshold
model.overrides["iou"] = iou_threshold
# Perform model prediction
results = model.predict(image, imgsz=image_size, return_outputs=True)
# Initialize an empty list to store the output
output = []
# Iterate over the results
for result in results:
# Check if segmentation masks are available
if 'masks' in result and result['masks'] is not None:
masks = result['masks']['data']
for i, (mask, box) in enumerate(zip(masks, result['boxes'])):
label = model.names[int(result['boxes']['cls'][i])]
mask_coords = mask.tolist() # Convert mask coordinates to list format
output.append({"label": label, "mask_coords": mask_coords})
else:
# If masks are not available, just extract bounding box information
for i, box in enumerate(result['boxes']):
label = model.names[int(result['boxes']['cls'][i])]
bbox = box['xyxy'].tolist() # Bounding box coordinates
output.append({"label": label, "bbox_coords": bbox})
return output
# Define Gradio interface inputs and outputs
inputs = [
gr.Image(type="filepath", label="Input Image"),
gr.Dropdown(
model_names,
value=current_model_name,
label="Model type",
),
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
),
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
# Output is a dictionary containing label names and coordinates of masks or boxes
outputs = gr.JSON(label="Output Masks and Labels")
title = "Ultralytics YOLOv8 Segmentation Demo"
# Example images for the interface
examples = [
["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
]
# Build the Gradio demo app
demo_app = gr.Interface(
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
cache_examples=False, # Set to False to avoid caching issues
theme="default",
)
# Launch the app
demo_app.queue().launch(debug=True)