kedimestan commited on
Commit
d4461b5
·
verified ·
1 Parent(s): be786c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -16
app.py CHANGED
@@ -1,9 +1,9 @@
1
  import gradio as gr
2
  import sahi
3
  import torch
4
- from ultralyticsplus import YOLO
5
 
6
- # Download example images
7
  sahi.utils.file.download_from_url(
8
  "https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
9
  "highway.jpg",
@@ -17,7 +17,7 @@ sahi.utils.file.download_from_url(
17
  "zidane.jpg",
18
  )
19
 
20
- # Define the model names
21
  model_names = [
22
  "yolov8n-seg.pt",
23
  "yolov8s-seg.pt",
@@ -26,7 +26,6 @@ model_names = [
26
  "yolov8x-seg.pt",
27
  ]
28
 
29
- # Set the initial model
30
  current_model_name = "yolov8m-seg.pt"
31
  model = YOLO(current_model_name)
32
 
@@ -62,18 +61,29 @@ def yolov8_inference(
62
 
63
  # Perform model prediction
64
  results = model.predict(image, imgsz=image_size, return_outputs=True)
65
-
66
- # Extract masks, coordinates, and label names
67
  output = []
 
 
68
  for result in results:
69
- for mask, box in zip(result.masks.xy, result.boxes):
70
- label = model.names[int(box.cls[0])]
71
- mask_coords = mask.tolist() # Convert mask coordinates to list format
72
- output.append({"label": label, "mask_coords": mask_coords})
 
 
 
 
 
 
 
 
 
73
 
74
  return output
75
 
76
- # Define Gradio input and output components
77
  inputs = [
78
  gr.Image(type="filepath", label="Input Image"),
79
  gr.Dropdown(
@@ -88,25 +98,26 @@ inputs = [
88
  gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
89
  ]
90
 
91
- # Output the object masks and label names as a JSON-like format
92
- outputs = gr.JSON(label="Detected Objects with Masks and Labels")
93
 
94
- # Title and example inputs
95
  title = "Ultralytics YOLOv8 Segmentation Demo"
 
 
96
  examples = [
97
  ["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
98
  ["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
99
  ["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
100
  ]
101
 
102
- # Create the Gradio interface
103
  demo_app = gr.Interface(
104
  fn=yolov8_inference,
105
  inputs=inputs,
106
  outputs=outputs,
107
  title=title,
108
  examples=examples,
109
- cache_examples=True,
110
  theme="default",
111
  )
112
 
 
1
  import gradio as gr
2
  import sahi
3
  import torch
4
+ from ultralyticsplus import YOLO, render_model_output
5
 
6
+ # Download sample images
7
  sahi.utils.file.download_from_url(
8
  "https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
9
  "highway.jpg",
 
17
  "zidane.jpg",
18
  )
19
 
20
+ # List of YOLOv8 segmentation models
21
  model_names = [
22
  "yolov8n-seg.pt",
23
  "yolov8s-seg.pt",
 
26
  "yolov8x-seg.pt",
27
  ]
28
 
 
29
  current_model_name = "yolov8m-seg.pt"
30
  model = YOLO(current_model_name)
31
 
 
61
 
62
  # Perform model prediction
63
  results = model.predict(image, imgsz=image_size, return_outputs=True)
64
+
65
+ # Initialize an empty list to store the output
66
  output = []
67
+
68
+ # Iterate over the results
69
  for result in results:
70
+ # Check if segmentation masks are available
71
+ if 'masks' in result and result['masks'] is not None:
72
+ masks = result['masks']['data']
73
+ for i, (mask, box) in enumerate(zip(masks, result['boxes'])):
74
+ label = model.names[int(result['boxes']['cls'][i])]
75
+ mask_coords = mask.tolist() # Convert mask coordinates to list format
76
+ output.append({"label": label, "mask_coords": mask_coords})
77
+ else:
78
+ # If masks are not available, just extract bounding box information
79
+ for i, box in enumerate(result['boxes']):
80
+ label = model.names[int(result['boxes']['cls'][i])]
81
+ bbox = box['xyxy'].tolist() # Bounding box coordinates
82
+ output.append({"label": label, "bbox_coords": bbox})
83
 
84
  return output
85
 
86
+ # Define Gradio interface inputs and outputs
87
  inputs = [
88
  gr.Image(type="filepath", label="Input Image"),
89
  gr.Dropdown(
 
98
  gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
99
  ]
100
 
101
+ # Output is a dictionary containing label names and coordinates of masks or boxes
102
+ outputs = gr.JSON(label="Output Masks and Labels")
103
 
 
104
  title = "Ultralytics YOLOv8 Segmentation Demo"
105
+
106
+ # Example images for the interface
107
  examples = [
108
  ["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
109
  ["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
110
  ["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
111
  ]
112
 
113
+ # Build the Gradio demo app
114
  demo_app = gr.Interface(
115
  fn=yolov8_inference,
116
  inputs=inputs,
117
  outputs=outputs,
118
  title=title,
119
  examples=examples,
120
+ cache_examples=False, # Set to False to avoid caching issues
121
  theme="default",
122
  )
123