Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,28 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from datasets import load_dataset
|
3 |
import gradio as gr
|
4 |
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
5 |
-
import
|
6 |
|
7 |
-
# Load
|
8 |
-
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
question = data.get('input', '') # Safely access the 'input' field
|
15 |
-
answer = data.get('response', '') # Safely access the 'response' field
|
16 |
-
docs.append({
|
17 |
-
"question": question,
|
18 |
-
"answer": answer
|
19 |
-
})
|
20 |
-
return docs
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
class HoroscopeRetriever(RagRetriever):
|
27 |
-
def __init__(self, docs, tokenizer):
|
28 |
-
self.docs = docs
|
29 |
-
self.tokenizer = tokenizer
|
30 |
-
|
31 |
-
def retrieve(self, question_hidden_states, n_docs=1):
|
32 |
-
# Convert the question_hidden_states to a text string
|
33 |
-
question = question_hidden_states[0]
|
34 |
-
|
35 |
-
if isinstance(question, np.ndarray):
|
36 |
-
if question.size == 1:
|
37 |
-
question = question.item() # Convert single-element array to scalar
|
38 |
-
else:
|
39 |
-
question = str(question[0]) # Take the first element of the array
|
40 |
-
else:
|
41 |
-
question = str(question)
|
42 |
-
|
43 |
-
question = question.lower()
|
44 |
-
|
45 |
-
# Simple retrieval logic: find the most relevant document based on the question
|
46 |
-
best_match = None
|
47 |
-
for doc in self.docs:
|
48 |
-
if question in doc["question"].lower():
|
49 |
-
best_match = doc
|
50 |
-
break
|
51 |
-
|
52 |
-
if best_match:
|
53 |
-
# Fake embedding as RAG expects this (In a real case, compute embeddings)
|
54 |
-
retrieved_doc_embeds = torch.zeros((1, 1, 768)) # Example tensor
|
55 |
-
doc_ids = ["0"] # Example document ID
|
56 |
-
docs = [best_match["answer"]]
|
57 |
else:
|
58 |
-
|
59 |
-
doc_ids = ["0"] # Example document ID
|
60 |
-
docs = ["Sorry, I couldn't find a relevant horoscope."]
|
61 |
-
|
62 |
-
return retrieved_doc_embeds, doc_ids, docs
|
63 |
|
64 |
-
# Initialize the custom retriever with the
|
65 |
-
|
66 |
-
retriever = HoroscopeRetriever(docs, tokenizer)
|
67 |
|
68 |
# Initialize RAG components
|
|
|
69 |
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever)
|
70 |
|
71 |
# Define the chatbot function
|
@@ -78,5 +35,5 @@ def horoscope_chatbot(input_text):
|
|
78 |
# Set up Gradio interface
|
79 |
iface = gr.Interface(fn=horoscope_chatbot, inputs="text", outputs="text", title="Horoscope RAG Chatbot")
|
80 |
|
81 |
-
# Launch the interface
|
82 |
-
iface.launch(
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
3 |
+
import json
|
4 |
|
5 |
+
# Load horoscope data
|
6 |
+
with open("horoscope_data.json", "r") as file:
|
7 |
+
horoscope_data = json.load(file)
|
8 |
|
9 |
+
# Custom Retriever that looks up horoscopes
|
10 |
+
class CustomHoroscopeRetriever(RagRetriever):
|
11 |
+
def __init__(self, horoscope_data):
|
12 |
+
self.horoscope_data = horoscope_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def retrieve(self, question_texts, n_docs=1):
|
15 |
+
zodiac_sign = question_texts[0].capitalize()
|
16 |
+
if zodiac_sign in self.horoscope_data:
|
17 |
+
return [self.horoscope_data[zodiac_sign]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
else:
|
19 |
+
return ["I couldn't find your zodiac sign. Please try again with a valid one."]
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Initialize the custom retriever with the horoscope data
|
22 |
+
retriever = CustomHoroscopeRetriever(horoscope_data)
|
|
|
23 |
|
24 |
# Initialize RAG components
|
25 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
26 |
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever)
|
27 |
|
28 |
# Define the chatbot function
|
|
|
35 |
# Set up Gradio interface
|
36 |
iface = gr.Interface(fn=horoscope_chatbot, inputs="text", outputs="text", title="Horoscope RAG Chatbot")
|
37 |
|
38 |
+
# Launch the interface
|
39 |
+
iface.launch()
|