File size: 1,036 Bytes
d529d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a661c51
d529d0a
 
 
 
 
5da15d8
 
 
e246b9e
5da15d8
 
e246b9e
 
a661c51
e246b9e
 
5da15d8
 
 
e246b9e
5da15d8
e246b9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
import pandas as pd
import plotly.express as px

# Define the data
data = pd.DataFrame({
    'Illness': ['Anxiety', 'Depression', 'Diabetes', 'Heart Disease'],
    'Cost (Billion USD)': [42, 210, 327, 219]
})

# Define the sunburst plot
fig = px.sunburst(
    data,
    path=['Illness'],
    values='Cost (Billion USD)',
    color='Cost (Billion USD)',
    color_continuous_scale='reds'
)

# Define the Streamlit app
st.title('Cost of Illnesses in Billion USD per Year')
st.plotly_chart(fig, use_container_width=True)




# Define the data
data = pd.DataFrame({
    'Illness': ['Anxiety 😰', 'Depression πŸ˜”', 'Diabetes 🩸', 'Heart Disease πŸ’”'],
    'SNOMED': ['35398006', '35489007', '73211009', '53741008'],
    'CPT Code': ['90834, 90837, 90847', '90785, 90832, 90834', '82947, 82948, 82950', '93000, 93010, 93015'],
    'ICD10': ['F41.1', 'F32.9', 'E11.9', 'I50.9'],
    'LOINC': ['59284-0', '72166-2', '4548-4', '8616-5']
})

# Define the Streamlit app
st.title('Codes for Illnesses')
st.table(data)