Spaces:
Sleeping
Sleeping
File size: 5,087 Bytes
4549941 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from mysite.libs.utilities import chat_with_interpreter, completion, process_file,no_process_file
from interpreter import interpreter
import mysite.interpreter.interpreter_config # インポートするだけで設定が適用されます
import duckdb
def format_response(chunk, full_response):
# Message
if chunk["type"] == "message":
full_response += chunk.get("content", "")
if chunk.get("end", False):
full_response += "\n"
# Code
if chunk["type"] == "code":
if chunk.get("start", False):
full_response += "```python\n"
full_response += chunk.get("content", "").replace("`", "")
if chunk.get("end", False):
full_response += "\n```\n"
# Output
if chunk["type"] == "confirmation":
if chunk.get("start", False):
full_response += "```python\n"
full_response += chunk.get("content", {}).get("code", "")
if chunk.get("end", False):
full_response += "```\n"
# Console
if chunk["type"] == "console":
if chunk.get("start", False):
full_response += "```python\n"
if chunk.get("format", "") == "active_line":
console_content = chunk.get("content", "")
if console_content is None:
full_response += "No output available on console."
if chunk.get("format", "") == "output":
console_content = chunk.get("content", "")
full_response += console_content
if chunk.get("end", False):
full_response += "\n```\n"
# Image
if chunk["type"] == "image":
if chunk.get("start", False) or chunk.get("end", False):
full_response += "\n"
else:
image_format = chunk.get("format", "")
if image_format == "base64.png":
image_content = chunk.get("content", "")
if image_content:
image = Image.open(BytesIO(base64.b64decode(image_content)))
new_image = Image.new("RGB", image.size, "white")
new_image.paste(image, mask=image.split()[3])
buffered = BytesIO()
new_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
full_response += f"![Image](data:image/png;base64,{img_str})\n"
return full_response
# Set the environment variable.
def chat_with_interpreter(
message, history, a=None, b=None, c=None, d=None
): # , openai_api_key):
# Set the API key for the interpreter
# interpreter.llm.api_key = openai_api_key
if message == "reset":
interpreter.messages = []
interpreter.reset()
return "Interpreter reset", history
full_response = ""
# add_conversation(history,20)
user_entry = {"role": "user", "type": "message", "content": message}
#messages.append(user_entry)
# Call interpreter.chat and capture the result
# message = message + "\nシンタックスを確認してください。"
# result = interpreter.chat(message)
for chunk in interpreter.chat(message, display=False, stream=True):
# print(chunk)
# output = '\n'.join(item['content'] for item in result if 'content' in item)
full_response = format_response(chunk, full_response)
yield full_response # chunk.get("content", "")
no_process_file(message,"ai")
# Extract the 'content' field from all elements in the result
yield full_response
return full_response, history
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
chatbot = gr.Chatbot(height=650, placeholder=PLACEHOLDER, label="Gradio ChatInterface")
gradio_interface = gr.ChatInterface(
fn=chat_with_interpreter,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
# democs,
examples=[
["HTMLのサンプルを作成して"],
[
"CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml"
],
],
cache_examples=False,
)
|