File size: 5,087 Bytes
4549941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from mysite.libs.utilities import chat_with_interpreter, completion, process_file,no_process_file
from interpreter import interpreter
import mysite.interpreter.interpreter_config  # インポートするだけで設定が適用されます
import duckdb

def format_response(chunk, full_response):
    # Message
    if chunk["type"] == "message":
        full_response += chunk.get("content", "")
        if chunk.get("end", False):
            full_response += "\n"

    # Code
    if chunk["type"] == "code":
        if chunk.get("start", False):
            full_response += "```python\n"
        full_response += chunk.get("content", "").replace("`", "")
        if chunk.get("end", False):
            full_response += "\n```\n"

    # Output
    if chunk["type"] == "confirmation":
        if chunk.get("start", False):
            full_response += "```python\n"
        full_response += chunk.get("content", {}).get("code", "")
        if chunk.get("end", False):
            full_response += "```\n"

    # Console
    if chunk["type"] == "console":
        if chunk.get("start", False):
            full_response += "```python\n"
        if chunk.get("format", "") == "active_line":
            console_content = chunk.get("content", "")
            if console_content is None:
                full_response += "No output available on console."
        if chunk.get("format", "") == "output":
            console_content = chunk.get("content", "")
            full_response += console_content
        if chunk.get("end", False):
            full_response += "\n```\n"

    # Image
    if chunk["type"] == "image":
        if chunk.get("start", False) or chunk.get("end", False):
            full_response += "\n"
        else:
            image_format = chunk.get("format", "")
            if image_format == "base64.png":
                image_content = chunk.get("content", "")
                if image_content:
                    image = Image.open(BytesIO(base64.b64decode(image_content)))
                    new_image = Image.new("RGB", image.size, "white")
                    new_image.paste(image, mask=image.split()[3])
                    buffered = BytesIO()
                    new_image.save(buffered, format="PNG")
                    img_str = base64.b64encode(buffered.getvalue()).decode()
                    full_response += f"![Image](data:image/png;base64,{img_str})\n"

    return full_response


# Set the environment variable.
def chat_with_interpreter(
    message, history, a=None, b=None, c=None, d=None
):  # , openai_api_key):
    # Set the API key for the interpreter
    # interpreter.llm.api_key = openai_api_key

    if message == "reset":
        interpreter.messages = []
        interpreter.reset()
        return "Interpreter reset", history
    full_response = ""
    # add_conversation(history,20)
    user_entry = {"role": "user", "type": "message", "content": message}
    #messages.append(user_entry)
    # Call interpreter.chat and capture the result
    # message = message + "\nシンタックスを確認してください。"
    # result = interpreter.chat(message)
    for chunk in interpreter.chat(message, display=False, stream=True):
        # print(chunk)
        # output = '\n'.join(item['content'] for item in result if 'content' in item)
        full_response = format_response(chunk, full_response)
        yield full_response  # chunk.get("content", "")
    no_process_file(message,"ai")
    # Extract the 'content' field from all elements in the result

    yield full_response
    return full_response, history

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  ">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

chatbot = gr.Chatbot(height=650, placeholder=PLACEHOLDER, label="Gradio ChatInterface")



gradio_interface = gr.ChatInterface(
    fn=chat_with_interpreter,
    chatbot=chatbot,
    fill_height=True,
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Slider(
            minimum=0,
            maximum=1,
            step=0.1,
            value=0.95,
            label="Temperature",
            render=False,
        ),
        gr.Slider(
            minimum=128,
            maximum=4096,
            step=1,
            value=512,
            label="Max new tokens",
            render=False,
        ),
    ],
    # democs,
    examples=[
        ["HTMLのサンプルを作成して"],
        [
            "CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml"
        ],
    ],
    cache_examples=False,
)