Spaces:
Sleeping
Sleeping
File size: 4,963 Bytes
5a16c22 f2cf135 5a16c22 f2cf135 5a16c22 f2cf135 5a16c22 f2cf135 5a16c22 f2cf135 5a16c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# prompt: fastapi route 処理作成 引数は calat wehth state x
from fastapi import APIRouter, HTTPException
from babyagi.classesa import da
import psycopg2
from sentence_transformers import SentenceTransformer
from fastapi import APIRouter, HTTPException
router = APIRouter(prefix="/leaning", tags=["leaning"])
@router.get("/route/{calat}/{wehth}/{state}/{x}")
async def route(calat: float, wehth: float, state: str, x: int):
result = calculate(x,y,z,c)
# Validate input parameters
#if not (0.0 <= calat <= 90.0):
# raise HTTPException(status_code=400, detail="Invalid calat value.")
# Process the request and return a response
# ...
return {"result": "OK"}
class ProductDatabase:
def __init__(self, database_url):
self.database_url = database_url
self.conn = None
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def connect(self):
self.conn = psycopg2.connect(self.database_url)
def close(self):
if self.conn:
self.conn.close()
def setup_vector_extension_and_column(self):
with self.conn.cursor() as cursor:
# pgvector拡張機能のインストール
cursor.execute("CREATE EXTENSION IF NOT EXISTS vector;")
# ベクトルカラムの追加
cursor.execute("ALTER TABLE products ADD COLUMN IF NOT EXISTS vector_col vector(384);")
self.conn.commit()
def get_embedding(self, text):
embedding = self.model.encode(text)
return embedding
def insert_vector(self, product_id, text):
vector = self.get_embedding(text).tolist() # ndarray をリストに変換
with self.conn.cursor() as cursor:
cursor.execute("UPDATE diamondprice SET vector_col = %s WHERE id = %s", (vector, product_id))
self.conn.commit()
def search_similar_vectors(self, query_text, top_k=50):
query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換
with self.conn.cursor() as cursor:
cursor.execute("""
SELECT id,price,carat, cut, color, clarity, depth, diamondprice.table, x, y, z, vector_col <=> %s::vector AS distance
FROM diamondprice
WHERE vector_col IS NOT NULL
ORDER BY distance asc
LIMIT %s;
""", (query_vector, top_k))
results = cursor.fetchall()
return results
def search_similar_all(self, query_text, top_k=5):
query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換
with self.conn.cursor() as cursor:
cursor.execute("""
SELECT id,carat, cut, color, clarity, depth, diamondprice.table, x, y, z
FROM diamondprice
order by id asc
limit 10000000
""", (query_vector, top_k))
results = cursor.fetchall()
return results
def calculate(query:str):
# データベース接続情報
DATABASE_URL = "postgresql://miyataken999:yz1wPf4KrWTm@ep-odd-mode-93794521.us-east-2.aws.neon.tech/neondb?sslmode=require"
# ProductDatabaseクラスのインスタンスを作成
db = ProductDatabase(DATABASE_URL)
# データベースに接続
db.connect()
try:
# pgvector拡張機能のインストールとカラムの追加
db.setup_vector_extension_and_column()
print("Vector extension installed and column added successfully.")
query_text="1"
results = db.search_similar_all(query_text)
print("Search results:")
DEBUG=0
if DEBUG==1:
for result in results:
print(result)
id = result[0]
sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9])
print(sample_text)
db.insert_vector(id, sample_text)
#return
# サンプルデータの挿入
#sample_text = """"""
#sample_product_id = 1 # 実際の製品IDを使用
#db.insert_vector(sample_product_id, sample_text)
#db.insert_vector(2, sample_text)
#print(f"Vector inserted for product ID {sample_product_id}.")
# ベクトル検索
query_text = "2.03Very GoodJSI262.058.08.068.125.05"
query_text = "2.03Very GoodJSI2"
#query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55"
results = db.search_similar_vectors(query)
res_all = ""
print("Search results:")
for result in results:
print(result)
res_all += result+""
# send to chat
finally:
# 接続を閉じる
db.close()
#router = APIRouter()
|