Spaces:
Sleeping
Sleeping
File size: 4,038 Bytes
0f43f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
#!/usr/bin/env python3
import os
import curses
import argparse
import openai
import pinecone
from dotenv import load_dotenv
import textwrap
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
assert OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env"
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY", "")
assert PINECONE_API_KEY, "PINECONE_API_KEY environment variable is missing from .env"
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT", "us-east1-gcp")
assert PINECONE_ENVIRONMENT, "PINECONE_ENVIRONMENT environment variable is missing from .env"
# Table config
PINECONE_TABLE_NAME = os.getenv("TABLE_NAME", "")
assert PINECONE_TABLE_NAME, "TABLE_NAME environment variable is missing from .env"
# Function to query records from the Pinecone index
def query_records(index, query, top_k=1000):
results = index.query(query, top_k=top_k, include_metadata=True)
return [{"name": f"{task.metadata['task']}", "result": f"{task.metadata['result']}"} for task in results.matches]
# Get embedding for the text
def get_ada_embedding(text):
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
def draw_tasks(stdscr, tasks, scroll_pos, selected):
y = 0
h, w = stdscr.getmaxyx()
for idx, task in enumerate(tasks[scroll_pos:], start=scroll_pos):
if y >= h:
break
task_name = f'{task["name"]}'
truncated_str = task_name[:w-1]
if idx == selected:
stdscr.addstr(y, 0, truncated_str, curses.A_REVERSE)
else:
stdscr.addstr(y, 0, truncated_str)
y += 1
def draw_result(stdscr, task):
task_name = f'Task: {task["name"]}'
task_result = f'Result: {task["result"]}'
_, w = stdscr.getmaxyx()
task_name_wrapped = textwrap.wrap(task_name, width=w)
for i, line in enumerate(task_name_wrapped):
stdscr.addstr(i, 0, line)
y, _ = stdscr.getyx()
stdscr.addstr(y+1, 0, '------------------')
stdscr.addstr(y+2, 0, task_result)
def draw_summary(stdscr, objective, tasks, start, num):
stdscr.box()
summary_text = f'{len(tasks)} tasks ({start}-{num}) | {objective}'
stdscr.addstr(1, 1, summary_text[:stdscr.getmaxyx()[1] - 2])
def main(stdscr):
# Configure OpenAI
openai.api_key = OPENAI_API_KEY
# Initialize Pinecone
pinecone.init(api_key=PINECONE_API_KEY)
# Connect to the objective index
index = pinecone.Index(PINECONE_TABLE_NAME)
curses.curs_set(0)
stdscr.timeout(1000)
h, w = stdscr.getmaxyx()
left_w = w // 2
visible_lines = h - 3
scroll_pos = 0
selected = 0
# Parse command-line arguments
parser = argparse.ArgumentParser(description="Query Pinecone index using a string.")
parser.add_argument('objective', nargs='*', metavar='<objective>', help='''
main objective description. Doesn\'t need to be quoted.
if not specified, get objective from environment.
''', default=[os.getenv("OBJECTIVE", "")])
args = parser.parse_args()
# Query records from the index
objective = ' '.join(args.objective).strip().replace("\n", " ")
retrieved_tasks = query_records(index, get_ada_embedding(objective))
while True:
stdscr.clear()
draw_tasks(stdscr.subwin(h-3, left_w, 0, 0), retrieved_tasks, scroll_pos, selected)
draw_result(stdscr.subwin(h, w - left_w, 0, left_w), retrieved_tasks[selected])
draw_summary(stdscr.subwin(3, left_w, h - 3, 0), objective, retrieved_tasks, scroll_pos+1, scroll_pos+h-3)
stdscr.refresh()
key = stdscr.getch()
if key == ord('q') or key == 27:
break
elif key == curses.KEY_UP and selected > 0:
selected -= 1
if selected < scroll_pos:
scroll_pos -= 1
elif key == curses.KEY_DOWN and selected < len(retrieved_tasks) - 1:
selected += 1
if selected - scroll_pos >= visible_lines:
scroll_pos += 1
curses.wrapper(main) |