import os import json import openai import importlib.util import inspect from .skill import Skill class SkillRegistry: def __init__(self, api_keys, main_loop_function, skill_names=None): self.main_loop_function = main_loop_function self.skills = {} skill_files = [f for f in os.listdir('skills') if f.endswith('.py') and f != 'skill.py'] for skill_file in skill_files: module_name = skill_file[:-3] if skill_names and module_name not in skill_names: continue module = importlib.import_module(f'skills.{module_name}') for attr_name in dir(module): attr_value = getattr(module, attr_name) if inspect.isclass(attr_value) and issubclass(attr_value, Skill) and attr_value is not Skill: print(f"Attempting to instantiate skill: {attr_name}") try: skill = attr_value(api_keys, self.main_loop_function) if skill.valid: self.skills[skill.name] = skill except Exception as e: print(f"Error while instantiating skill '{attr_name}': {e}") skill = attr_value(api_keys, self.main_loop_function) # Print the names and descriptions of all loaded skills skill_info = "\n".join([f"{skill_name}: {skill.description}" for skill_name, skill in self.skills.items()]) print(skill_info) def load_all_skills(self): skills_dir = os.path.dirname(__file__) for filename in os.listdir(skills_dir): if filename.endswith(".py") and filename not in ["__init__.py", "skill.py", "skill_registry.py"]: skill_name = filename[:-3] # Remove .py extension self.load_skill(skill_name) def load_specific_skills(self, skill_names): for skill_name in skill_names: self.load_skill(skill_name) def load_skill(self, skill_name): skills_dir = os.path.dirname(__file__) filename = f"{skill_name}.py" if os.path.isfile(os.path.join(skills_dir, filename)): spec = importlib.util.spec_from_file_location(skill_name, os.path.join(skills_dir, filename)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) for item_name in dir(module): item = getattr(module, item_name) if isinstance(item, type) and issubclass(item, Skill) and item is not Skill: skill_instance = item(self.api_keys) self.skills[skill_instance.name] = skill_instance def get_skill(self, skill_name): skill = self.skills.get(skill_name) if skill is None: raise Exception( f"Skill '{skill_name}' not found. Please make sure the skill is loaded and all required API keys are set.") return skill def get_all_skills(self): return self.skills def reflect_skills(self, objective, task_list, task_outputs, skill_descriptions): prompt = ( f"You are an expert task manager. Reflect on the objective, entire task list, and the corresponding outputs. " f"Determine whether the available skills were sufficient, and if not, identify and describe new skills that are needed. " f"Provide your response as a JSON array. " f"OBJECTIVE: {objective}." f"AVAILABLE SKILLS: {skill_descriptions}." f"\n###Here is the current task list: {json.dumps(task_list)}" f"\n###Here is the task outputs: {json.dumps(task_outputs)}." f"Missing skills:" ) print("\033[90m\033[3m" + "\nReflecting on skills used in task list...\n" + "\033[0m") response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": "You are an AI specializing in reflecting on skills used in tasks and identifying missing skills. You will provide a JSON array as your response." }, { "role": "user", "content": prompt } ], temperature=0, max_tokens=4000, top_p=1, frequency_penalty=0, presence_penalty=0 ) # Extract the content of the assistant's response and parse it as JSON result = response["choices"][0]["message"]["content"] try: skills_analysis = json.loads(result) print(skills_analysis) except Exception as error: print(error)