litellmlope / litellm /tests /test_caching.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
import sys, os, uuid
import time
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion
from litellm.caching import Cache
import random
import hashlib
# litellm.set_verbose=True
messages = [{"role": "user", "content": "who is ishaan Github? "}]
# comment
import random
import string
def generate_random_word(length=4):
letters = string.ascii_lowercase
return "".join(random.choice(letters) for _ in range(length))
messages = [{"role": "user", "content": "who is ishaan 5222"}]
def test_caching_v2(): # test in memory cache
try:
litellm.set_verbose = True
litellm.cache = Cache()
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
litellm.success_callback = []
litellm._async_success_callback = []
if (
response2["choices"][0]["message"]["content"]
!= response1["choices"][0]["message"]["content"]
):
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_v2()
def test_caching_with_ttl():
try:
litellm.set_verbose = True
litellm.cache = Cache()
response1 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, ttl=0
)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
litellm.success_callback = []
litellm._async_success_callback = []
assert (
response2["choices"][0]["message"]["content"]
!= response1["choices"][0]["message"]["content"]
)
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
def test_caching_with_cache_controls():
try:
litellm.set_verbose = True
litellm.cache = Cache()
message = [{"role": "user", "content": f"Hey, how's it going? {uuid.uuid4()}"}]
## TTL = 0
response1 = completion(
model="gpt-3.5-turbo", messages=messages, cache={"ttl": 0}
)
response2 = completion(
model="gpt-3.5-turbo", messages=messages, cache={"s-maxage": 10}
)
print(f"response1: {response1}")
print(f"response2: {response2}")
assert (
response2["choices"][0]["message"]["content"]
!= response1["choices"][0]["message"]["content"]
)
message = [{"role": "user", "content": f"Hey, how's it going? {uuid.uuid4()}"}]
## TTL = 5
response1 = completion(
model="gpt-3.5-turbo", messages=messages, cache={"ttl": 5}
)
response2 = completion(
model="gpt-3.5-turbo", messages=messages, cache={"s-maxage": 5}
)
print(f"response1: {response1}")
print(f"response2: {response2}")
assert (
response2["choices"][0]["message"]["content"]
== response1["choices"][0]["message"]["content"]
)
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_with_cache_controls()
def test_caching_with_models_v2():
messages = [
{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}
]
litellm.cache = Cache()
print("test2 for caching")
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response3 = completion(model="command-nightly", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
if (
response3["choices"][0]["message"]["content"]
== response2["choices"][0]["message"]["content"]
):
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
):
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
# test_caching_with_models_v2()
embedding_large_text = (
"""
small text
"""
* 5
)
# # test_caching_with_models()
def test_embedding_caching():
import time
# litellm.set_verbose = True
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
start_time = time.time()
embedding1 = embedding(
model="text-embedding-ada-002", input=text_to_embed, caching=True
)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(
model="text-embedding-ada-002", input=text_to_embed, caching=True
)
end_time = time.time()
# print(f"embedding2: {embedding2}")
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
# test_embedding_caching()
def test_embedding_caching_azure():
print("Testing azure embedding caching")
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
api_key = os.environ["AZURE_API_KEY"]
api_base = os.environ["AZURE_API_BASE"]
api_version = os.environ["AZURE_API_VERSION"]
os.environ["AZURE_API_VERSION"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_KEY"] = ""
start_time = time.time()
print("AZURE CONFIGS")
print(api_version)
print(api_key)
print(api_base)
embedding1 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True,
)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True,
)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
os.environ["AZURE_API_VERSION"] = api_version
os.environ["AZURE_API_BASE"] = api_base
os.environ["AZURE_API_KEY"] = api_key
# test_embedding_caching_azure()
def test_redis_cache_completion():
litellm.set_verbose = False
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test2 for Redis Caching - non streaming")
response1 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20
)
response2 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20
)
response3 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, temperature=0.5
)
response4 = completion(model="command-nightly", messages=messages, caching=True)
print("\nresponse 1", response1)
print("\nresponse 2", response2)
print("\nresponse 3", response3)
print("\nresponse 4", response4)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
"""
1 & 2 should be exactly the same
1 & 3 should be different, since input params are diff
1 & 4 should be diff, since models are diff
"""
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
): # 1 and 2 should be the same
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
if (
response1["choices"][0]["message"]["content"]
== response3["choices"][0]["message"]["content"]
):
# if input params like seed, max_tokens are diff it should NOT be a cache hit
print(f"response1: {response1}")
print(f"response3: {response3}")
pytest.fail(
f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:"
)
if (
response1["choices"][0]["message"]["content"]
== response4["choices"][0]["message"]["content"]
):
# if models are different, it should not return cached response
print(f"response1: {response1}")
print(f"response4: {response4}")
pytest.fail(f"Error occurred:")
assert response1.id == response2.id
assert response1.created == response2.created
assert response1.choices[0].message.content == response2.choices[0].message.content
# test_redis_cache_completion()
def test_redis_cache_completion_stream():
try:
litellm.success_callback = []
litellm._async_success_callback = []
litellm.callbacks = []
litellm.set_verbose = True
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
)
response_1_content = ""
for chunk in response1:
print(chunk)
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
time.sleep(0.5)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
)
response_2_content = ""
for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.success_callback = []
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
litellm.success_callback = []
raise e
"""
1 & 2 should be exactly the same
"""
test_redis_cache_completion_stream()
def test_redis_cache_acompletion_stream():
import asyncio
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response_1_content = ""
response_2_content = ""
async def call1():
nonlocal response_1_content
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response1:
print(chunk)
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
asyncio.run(call1())
time.sleep(0.5)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
async def call2():
nonlocal response_2_content
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print(response_2_content)
asyncio.run(call2())
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
raise e
# test_redis_cache_acompletion_stream()
def test_redis_cache_acompletion_stream_bedrock():
import asyncio
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response_1_content = ""
response_2_content = ""
async def call1():
nonlocal response_1_content
response1 = await litellm.acompletion(
model="bedrock/anthropic.claude-v1",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response1:
print(chunk)
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
asyncio.run(call1())
time.sleep(0.5)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
async def call2():
nonlocal response_2_content
response2 = await litellm.acompletion(
model="bedrock/anthropic.claude-v1",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print(response_2_content)
asyncio.run(call2())
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
raise e
def test_s3_cache_acompletion_stream_azure():
import asyncio
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(
type="s3", s3_bucket_name="cache-bucket-litellm", s3_region_name="us-west-2"
)
print("s3 Cache: test for caching, streaming + completion")
response_1_content = ""
response_2_content = ""
response_1_created = ""
response_2_created = ""
async def call1():
nonlocal response_1_content, response_1_created
response1 = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response1:
print(chunk)
response_1_created = chunk.created
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
asyncio.run(call1())
time.sleep(0.5)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
async def call2():
nonlocal response_2_content, response_2_created
response2 = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
response_2_created = chunk.created
print(response_2_content)
asyncio.run(call2())
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
# prioritizing getting a new deploy out - will look at this in the next deploy
# print("response 1 created", response_1_created)
# print("response 2 created", response_2_created)
# assert response_1_created == response_2_created
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
raise e
# test_s3_cache_acompletion_stream_azure()
# test_redis_cache_acompletion_stream_bedrock()
# redis cache with custom keys
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = (
kwargs.get("model", "")
+ str(kwargs.get("messages", ""))
+ str(kwargs.get("temperature", ""))
+ str(kwargs.get("logit_bias", ""))
)
return key
def test_custom_redis_cache_with_key():
messages = [{"role": "user", "content": "write a one line story"}]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
litellm.cache.get_cache_key = custom_get_cache_key
local_cache = {}
def set_cache(key, value):
local_cache[key] = value
def get_cache(key):
if key in local_cache:
return local_cache[key]
litellm.cache.cache.set_cache = set_cache
litellm.cache.cache.get_cache = get_cache
# patch this redis cache get and set call
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=1,
caching=True,
num_retries=3,
)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=1,
caching=True,
num_retries=3,
)
response3 = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=1,
caching=False,
num_retries=3,
)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
if (
response3["choices"][0]["message"]["content"]
== response2["choices"][0]["message"]["content"]
):
pytest.fail(f"Error occurred:")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
# test_custom_redis_cache_with_key()
def test_cache_override():
# test if we can override the cache, when `caching=False` but litellm.cache = Cache() is set
# in this case it should not return cached responses
litellm.cache = Cache()
print("Testing cache override")
litellm.set_verbose = True
# test embedding
response1 = embedding(
model="text-embedding-ada-002", input=["hello who are you"], caching=False
)
start_time = time.time()
response2 = embedding(
model="text-embedding-ada-002", input=["hello who are you"], caching=False
)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
assert (
end_time - start_time > 0.1
) # ensure 2nd response comes in over 0.1s. This should not be cached.
# test_cache_override()
def test_custom_redis_cache_params():
# test if we can init redis with **kwargs
try:
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
db=0,
ssl=True,
ssl_certfile="./redis_user.crt",
ssl_keyfile="./redis_user_private.key",
ssl_ca_certs="./redis_ca.pem",
)
print(litellm.cache.cache.redis_client)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
pytest.fail(f"Error occurred:", e)
def test_get_cache_key():
from litellm.caching import Cache
try:
print("Testing get_cache_key")
cache_instance = Cache()
cache_key = cache_instance.get_cache_key(
**{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "write a one sentence poem about: 7510"}
],
"max_tokens": 40,
"temperature": 0.2,
"stream": True,
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
"litellm_logging_obj": {},
}
)
cache_key_2 = cache_instance.get_cache_key(
**{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "write a one sentence poem about: 7510"}
],
"max_tokens": 40,
"temperature": 0.2,
"stream": True,
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
"litellm_logging_obj": {},
}
)
cache_key_str = "model: gpt-3.5-turbomessages: [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}]temperature: 0.2max_tokens: 40"
hash_object = hashlib.sha256(cache_key_str.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
assert cache_key == hash_hex
assert (
cache_key_2 == hash_hex
), f"{cache_key} != {cache_key_2}. The same kwargs should have the same cache key across runs"
embedding_cache_key = cache_instance.get_cache_key(
**{
"model": "azure/azure-embedding-model",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
"api_key": "",
"api_version": "2023-07-01-preview",
"timeout": None,
"max_retries": 0,
"input": ["hi who is ishaan"],
"caching": True,
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
}
)
print(embedding_cache_key)
embedding_cache_key_str = (
"model: azure/azure-embedding-modelinput: ['hi who is ishaan']"
)
hash_object = hashlib.sha256(embedding_cache_key_str.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
assert (
embedding_cache_key == hash_hex
), f"{embedding_cache_key} != 'model: azure/azure-embedding-modelinput: ['hi who is ishaan']'. The same kwargs should have the same cache key across runs"
# Proxy - embedding cache, test if embedding key, gets model_group and not model
embedding_cache_key_2 = cache_instance.get_cache_key(
**{
"model": "azure/azure-embedding-model",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
"api_key": "",
"api_version": "2023-07-01-preview",
"timeout": None,
"max_retries": 0,
"input": ["hi who is ishaan"],
"caching": True,
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
"proxy_server_request": {
"url": "http://0.0.0.0:8000/embeddings",
"method": "POST",
"headers": {
"host": "0.0.0.0:8000",
"user-agent": "curl/7.88.1",
"accept": "*/*",
"content-type": "application/json",
"content-length": "80",
},
"body": {
"model": "azure-embedding-model",
"input": ["hi who is ishaan"],
},
},
"user": None,
"metadata": {
"user_api_key": None,
"headers": {
"host": "0.0.0.0:8000",
"user-agent": "curl/7.88.1",
"accept": "*/*",
"content-type": "application/json",
"content-length": "80",
},
"model_group": "EMBEDDING_MODEL_GROUP",
"deployment": "azure/azure-embedding-model-ModelID-azure/azure-embedding-modelhttps://openai-gpt-4-test-v-1.openai.azure.com/2023-07-01-preview",
},
"model_info": {
"mode": "embedding",
"base_model": "text-embedding-ada-002",
"id": "20b2b515-f151-4dd5-a74f-2231e2f54e29",
},
"litellm_call_id": "2642e009-b3cd-443d-b5dd-bb7d56123b0e",
"litellm_logging_obj": "<litellm.utils.Logging object at 0x12f1bddb0>",
}
)
print(embedding_cache_key_2)
embedding_cache_key_str_2 = (
"model: EMBEDDING_MODEL_GROUPinput: ['hi who is ishaan']"
)
hash_object = hashlib.sha256(embedding_cache_key_str_2.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
assert embedding_cache_key_2 == hash_hex
print("passed!")
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred:", e)
# test_get_cache_key()
def test_cache_context_managers():
litellm.set_verbose = True
litellm.cache = Cache(type="redis")
# cache is on, disable it
litellm.disable_cache()
assert litellm.cache == None
assert "cache" not in litellm.success_callback
assert "cache" not in litellm._async_success_callback
# disable a cache that is off
litellm.disable_cache()
assert litellm.cache == None
assert "cache" not in litellm.success_callback
assert "cache" not in litellm._async_success_callback
litellm.enable_cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
)
assert litellm.cache != None
assert litellm.cache.type == "redis"
print("VARS of litellm.cache", vars(litellm.cache))
# test_cache_context_managers()
# test_custom_redis_cache_params()
# def test_redis_cache_with_ttl():
# cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
# sample_model_response_object_str = """{
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }"""
# sample_model_response_object = {
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }
# cache.add_cache(cache_key="test_key", result=sample_model_response_object_str, ttl=1)
# cached_value = cache.get_cache(cache_key="test_key")
# print(f"cached-value: {cached_value}")
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
# time.sleep(2)
# assert cache.get_cache(cache_key="test_key") is None
# # test_redis_cache_with_ttl()
# def test_in_memory_cache_with_ttl():
# cache = Cache(type="local")
# sample_model_response_object_str = """{
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }"""
# sample_model_response_object = {
# "choices": [
# {
# "finish_reason": "stop",
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# "created": 1691429984.3852863,
# "model": "claude-instant-1",
# "usage": {
# "prompt_tokens": 18,
# "completion_tokens": 23,
# "total_tokens": 41
# }
# }
# cache.add_cache(cache_key="test_key", result=sample_model_response_object_str, ttl=1)
# cached_value = cache.get_cache(cache_key="test_key")
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
# time.sleep(2)
# assert cache.get_cache(cache_key="test_key") is None
# # test_in_memory_cache_with_ttl()