litellmlope / litellm /tests /test_exceptions.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
from openai import AuthenticationError, BadRequestError, RateLimitError, OpenAIError
import os
import sys
import traceback
import subprocess
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import (
embedding,
completion,
# AuthenticationError,
ContextWindowExceededError,
# RateLimitError,
# ServiceUnavailableError,
# OpenAIError,
)
from concurrent.futures import ThreadPoolExecutor
import pytest
litellm.vertex_project = "pathrise-convert-1606954137718"
litellm.vertex_location = "us-central1"
litellm.num_retries = 0
# litellm.failure_callback = ["sentry"]
#### What this tests ####
# This tests exception mapping -> trigger an exception from an llm provider -> assert if output is of the expected type
# 5 providers -> OpenAI, Azure, Anthropic, Cohere, Replicate
# 3 main types of exceptions -> - Rate Limit Errors, Context Window Errors, Auth errors (incorrect/rotated key, etc.)
# Approach: Run each model through the test -> assert if the correct error (always the same one) is triggered
models = ["command-nightly"]
# Test 1: Context Window Errors
@pytest.mark.parametrize("model", models)
def test_context_window(model):
print("Testing context window error")
sample_text = "Say error 50 times" * 1000000
messages = [{"content": sample_text, "role": "user"}]
try:
litellm.set_verbose = True
response = completion(model=model, messages=messages)
print(f"response: {response}")
print("FAILED!")
pytest.fail(f"An exception occurred")
except ContextWindowExceededError as e:
print(f"Worked!")
except RateLimitError:
print("RateLimited!")
except Exception as e:
print(f"{e}")
pytest.fail(f"An error occcurred - {e}")
@pytest.mark.parametrize("model", models)
def test_context_window_with_fallbacks(model):
ctx_window_fallback_dict = {
"command-nightly": "claude-2",
"gpt-3.5-turbo-instruct": "gpt-3.5-turbo-16k",
"azure/chatgpt-v-2": "gpt-3.5-turbo-16k",
}
sample_text = "how does a court case get to the Supreme Court?" * 1000
messages = [{"content": sample_text, "role": "user"}]
completion(
model=model,
messages=messages,
context_window_fallback_dict=ctx_window_fallback_dict,
)
# for model in litellm.models_by_provider["bedrock"]:
# test_context_window(model=model)
# test_context_window(model="chat-bison")
# test_context_window_with_fallbacks(model="command-nightly")
# Test 2: InvalidAuth Errors
@pytest.mark.parametrize("model", models)
def invalid_auth(model): # set the model key to an invalid key, depending on the model
messages = [{"content": "Hello, how are you?", "role": "user"}]
temporary_key = None
try:
if model == "gpt-3.5-turbo" or model == "gpt-3.5-turbo-instruct":
temporary_key = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_KEY"] = "bad-key"
elif "bedrock" in model:
temporary_aws_access_key = os.environ["AWS_ACCESS_KEY_ID"]
os.environ["AWS_ACCESS_KEY_ID"] = "bad-key"
temporary_aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ["AWS_REGION_NAME"] = "bad-key"
temporary_secret_key = os.environ["AWS_SECRET_ACCESS_KEY"]
os.environ["AWS_SECRET_ACCESS_KEY"] = "bad-key"
elif model == "azure/chatgpt-v-2":
temporary_key = os.environ["AZURE_API_KEY"]
os.environ["AZURE_API_KEY"] = "bad-key"
elif model == "claude-instant-1":
temporary_key = os.environ["ANTHROPIC_API_KEY"]
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
elif model == "command-nightly":
temporary_key = os.environ["COHERE_API_KEY"]
os.environ["COHERE_API_KEY"] = "bad-key"
elif "j2" in model:
temporary_key = os.environ["AI21_API_KEY"]
os.environ["AI21_API_KEY"] = "bad-key"
elif "togethercomputer" in model:
temporary_key = os.environ["TOGETHERAI_API_KEY"]
os.environ[
"TOGETHERAI_API_KEY"
] = "84060c79880fc49df126d3e87b53f8a463ff6e1c6d27fe64207cde25cdfcd1f24a"
elif model in litellm.openrouter_models:
temporary_key = os.environ["OPENROUTER_API_KEY"]
os.environ["OPENROUTER_API_KEY"] = "bad-key"
elif model in litellm.aleph_alpha_models:
temporary_key = os.environ["ALEPH_ALPHA_API_KEY"]
os.environ["ALEPH_ALPHA_API_KEY"] = "bad-key"
elif model in litellm.nlp_cloud_models:
temporary_key = os.environ["NLP_CLOUD_API_KEY"]
os.environ["NLP_CLOUD_API_KEY"] = "bad-key"
elif (
model
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
):
temporary_key = os.environ["REPLICATE_API_KEY"]
os.environ["REPLICATE_API_KEY"] = "bad-key"
print(f"model: {model}")
response = completion(model=model, messages=messages)
print(f"response: {response}")
except AuthenticationError as e:
print(f"AuthenticationError Caught Exception - {str(e)}")
except (
OpenAIError
) as e: # is at least an openai error -> in case of random model errors - e.g. overloaded server
print(f"OpenAIError Caught Exception - {e}")
except Exception as e:
print(type(e))
print(type(AuthenticationError))
print(e.__class__.__name__)
print(f"Uncaught Exception - {e}")
pytest.fail(f"Error occurred: {e}")
if temporary_key != None: # reset the key
if model == "gpt-3.5-turbo":
os.environ["OPENAI_API_KEY"] = temporary_key
elif model == "chatgpt-test":
os.environ["AZURE_API_KEY"] = temporary_key
azure = True
elif model == "claude-instant-1":
os.environ["ANTHROPIC_API_KEY"] = temporary_key
elif model == "command-nightly":
os.environ["COHERE_API_KEY"] = temporary_key
elif (
model
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
):
os.environ["REPLICATE_API_KEY"] = temporary_key
elif "j2" in model:
os.environ["AI21_API_KEY"] = temporary_key
elif "togethercomputer" in model:
os.environ["TOGETHERAI_API_KEY"] = temporary_key
elif model in litellm.aleph_alpha_models:
os.environ["ALEPH_ALPHA_API_KEY"] = temporary_key
elif model in litellm.nlp_cloud_models:
os.environ["NLP_CLOUD_API_KEY"] = temporary_key
elif "bedrock" in model:
os.environ["AWS_ACCESS_KEY_ID"] = temporary_aws_access_key
os.environ["AWS_REGION_NAME"] = temporary_aws_region_name
os.environ["AWS_SECRET_ACCESS_KEY"] = temporary_secret_key
return
# for model in litellm.models_by_provider["bedrock"]:
# invalid_auth(model=model)
# invalid_auth(model="command-nightly")
# Test 3: Invalid Request Error
@pytest.mark.parametrize("model", models)
def test_invalid_request_error(model):
messages = [{"content": "hey, how's it going?", "role": "user"}]
with pytest.raises(BadRequestError):
completion(model=model, messages=messages, max_tokens="hello world")
def test_completion_azure_exception():
try:
import openai
print("azure gpt-3.5 test\n\n")
litellm.set_verbose = True
## Test azure call
old_azure_key = os.environ["AZURE_API_KEY"]
os.environ["AZURE_API_KEY"] = "good morning"
response = completion(
model="azure/chatgpt-v-2",
messages=[{"role": "user", "content": "hello"}],
)
os.environ["AZURE_API_KEY"] = old_azure_key
print(f"response: {response}")
print(response)
except openai.AuthenticationError as e:
os.environ["AZURE_API_KEY"] = old_azure_key
print("good job got the correct error for azure when key not set")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_azure_exception()
async def asynctest_completion_azure_exception():
try:
import openai
import litellm
print("azure gpt-3.5 test\n\n")
litellm.set_verbose = True
## Test azure call
old_azure_key = os.environ["AZURE_API_KEY"]
os.environ["AZURE_API_KEY"] = "good morning"
response = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=[{"role": "user", "content": "hello"}],
)
print(f"response: {response}")
print(response)
except openai.AuthenticationError as e:
os.environ["AZURE_API_KEY"] = old_azure_key
print("good job got the correct error for azure when key not set")
print(e)
except Exception as e:
print("Got wrong exception")
print("exception", e)
pytest.fail(f"Error occurred: {e}")
# import asyncio
# asyncio.run(
# asynctest_completion_azure_exception()
# )
def asynctest_completion_openai_exception_bad_model():
try:
import openai
import litellm, asyncio
print("azure exception bad model\n\n")
litellm.set_verbose = True
## Test azure call
async def test():
response = await litellm.acompletion(
model="openai/gpt-6",
messages=[{"role": "user", "content": "hello"}],
)
asyncio.run(test())
except openai.NotFoundError:
print("Good job this is a NotFoundError for a model that does not exist!")
print("Passed")
except Exception as e:
print("Raised wrong type of exception", type(e))
assert isinstance(e, openai.BadRequestError)
pytest.fail(f"Error occurred: {e}")
# asynctest_completion_openai_exception_bad_model()
def asynctest_completion_azure_exception_bad_model():
try:
import openai
import litellm, asyncio
print("azure exception bad model\n\n")
litellm.set_verbose = True
## Test azure call
async def test():
response = await litellm.acompletion(
model="azure/gpt-12",
messages=[{"role": "user", "content": "hello"}],
)
asyncio.run(test())
except openai.NotFoundError:
print("Good job this is a NotFoundError for a model that does not exist!")
print("Passed")
except Exception as e:
print("Raised wrong type of exception", type(e))
pytest.fail(f"Error occurred: {e}")
# asynctest_completion_azure_exception_bad_model()
def test_completion_openai_exception():
# test if openai:gpt raises openai.AuthenticationError
try:
import openai
print("openai gpt-3.5 test\n\n")
litellm.set_verbose = True
## Test azure call
old_azure_key = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_KEY"] = "good morning"
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "hello"}],
)
print(f"response: {response}")
print(response)
except openai.AuthenticationError as e:
os.environ["OPENAI_API_KEY"] = old_azure_key
print("OpenAI: good job got the correct error for openai when key not set")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_openai_exception()
def test_completion_mistral_exception():
# test if mistral/mistral-tiny raises openai.AuthenticationError
try:
import openai
print("Testing mistral ai exception mapping")
litellm.set_verbose = True
## Test azure call
old_azure_key = os.environ["MISTRAL_API_KEY"]
os.environ["MISTRAL_API_KEY"] = "good morning"
response = completion(
model="mistral/mistral-tiny",
messages=[{"role": "user", "content": "hello"}],
)
print(f"response: {response}")
print(response)
except openai.AuthenticationError as e:
os.environ["MISTRAL_API_KEY"] = old_azure_key
print("good job got the correct error for openai when key not set")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_mistral_exception()
def test_content_policy_exceptionimage_generation_openai():
try:
# this is ony a test - we needed some way to invoke the exception :(
litellm.set_verbose = True
response = litellm.image_generation(
prompt="where do i buy lethal drugs from", model="dall-e-3"
)
print(f"response: {response}")
assert len(response.data) > 0
except litellm.ContentPolicyViolationError as e:
print("caught a content policy violation error! Passed")
pass
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# test_content_policy_exceptionimage_generation_openai()
# # test_invalid_request_error(model="command-nightly")
# # Test 3: Rate Limit Errors
# def test_model_call(model):
# try:
# sample_text = "how does a court case get to the Supreme Court?"
# messages = [{ "content": sample_text,"role": "user"}]
# print(f"model: {model}")
# response = completion(model=model, messages=messages)
# except RateLimitError as e:
# print(f"headers: {e.response.headers}")
# return True
# # except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
# # return True
# except Exception as e:
# print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
# traceback.print_exc()
# pass
# return False
# # Repeat each model 500 times
# # extended_models = [model for model in models for _ in range(250)]
# extended_models = ["azure/chatgpt-v-2" for _ in range(250)]
# def worker(model):
# return test_model_call(model)
# # Create a dictionary to store the results
# counts = {True: 0, False: 0}
# # Use Thread Pool Executor
# with ThreadPoolExecutor(max_workers=500) as executor:
# # Use map to start the operation in thread pool
# results = executor.map(worker, extended_models)
# # Iterate over results and count True/False
# for result in results:
# counts[result] += 1
# accuracy_score = counts[True]/(counts[True] + counts[False])
# print(f"accuracy_score: {accuracy_score}")