import requests import time import os from dotenv import load_dotenv load_dotenv() # Set the base URL as needed base_url = "https://api.litellm.ai" # # Uncomment the line below if you want to switch to the local server # base_url = "http://0.0.0.0:8000" # Step 1 Add a config to the proxy, generate a temp key config = { "model_list": [ { "model_name": "gpt-3.5-turbo", "litellm_params": { "model": "gpt-3.5-turbo", "api_key": os.environ["OPENAI_API_KEY"], }, }, { "model_name": "gpt-3.5-turbo", "litellm_params": { "model": "azure/chatgpt-v-2", "api_key": os.environ["AZURE_API_KEY"], "api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/", "api_version": "2023-07-01-preview", }, }, ] } print("STARTING LOAD TEST Q") print(os.environ["AZURE_API_KEY"]) response = requests.post( url=f"{base_url}/key/generate", json={ "config": config, "duration": "30d", # default to 30d, set it to 30m if you want a temp key }, headers={"Authorization": "Bearer sk-hosted-litellm"}, ) print("\nresponse from generating key", response.text) print("\n json response from gen key", response.json()) generated_key = response.json()["key"] print("\ngenerated key for proxy", generated_key) # Step 2: Queue 50 requests to the proxy, using your generated_key import concurrent.futures def create_job_and_poll(request_num): print(f"Creating a job on the proxy for request {request_num}") job_response = requests.post( url=f"{base_url}/queue/request", json={ "model": "gpt-3.5-turbo", "messages": [ {"role": "system", "content": "write a short poem"}, ], }, headers={"Authorization": f"Bearer {generated_key}"}, ) print(job_response.status_code) print(job_response.text) print("\nResponse from creating job", job_response.text) job_response = job_response.json() job_id = job_response["id"] polling_url = job_response["url"] polling_url = f"{base_url}{polling_url}" print(f"\nCreated Job {request_num}, Polling Url {polling_url}") # Poll each request while True: try: print(f"\nPolling URL for request {request_num}", polling_url) polling_response = requests.get( url=polling_url, headers={"Authorization": f"Bearer {generated_key}"} ) print( f"\nResponse from polling url for request {request_num}", polling_response.text, ) polling_response = polling_response.json() status = polling_response.get("status", None) if status == "finished": llm_response = polling_response["result"] print(f"LLM Response for request {request_num}") print(llm_response) # Write the llm_response to load_test_log.txt try: with open("load_test_log.txt", "a") as response_file: response_file.write( f"Response for request: {request_num}\n{llm_response}\n\n" ) except Exception as e: print("GOT EXCEPTION", e) break time.sleep(0.5) except Exception as e: print("got exception when polling", e) # Number of requests num_requests = 100 # Use ThreadPoolExecutor for parallel execution with concurrent.futures.ThreadPoolExecutor(max_workers=num_requests) as executor: # Create and poll each request in parallel futures = [executor.submit(create_job_and_poll, i) for i in range(num_requests)] # Wait for all futures to complete concurrent.futures.wait(futures)