photo-merge / app.py
keplersj's picture
typos
fe3afc1
raw
history blame
2.16 kB
import streamlit as st
from PIL import Image
from transformers import pipeline as transformer
from diffusers import StableDiffusionPipeline
captions = []
with st.sidebar:
files = st.file_uploader("Upload images to blend", accept_multiple_files=True)
st.divider()
caption_model = st.selectbox("Caption Model", [
"Salesforce/blip-image-captioning-large",
"nlpconnect/vit-gpt2-image-captioning",
"microsoft/git-base",
"ydshieh/vit-gpt2-coco-en"
])
caption_max_tokens = st.number_input("Image Caption: Max Tokens", value=20)
st.divider()
caption_concat_joiner = st.text_input("Caption Concatenation Joiner", value=" ")
st.divider()
diffusion_model = st.selectbox("Diffusion Model", [
"stabilityai/stable-diffusion-xl-base-1.0",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"CompVis/stable-diffusion-v1-4"
])
image_gen_height = st.number_input("Stable Diffusion: Height", value=512)
image_gen_width = st.number_input("Stable Diffusion: Width", value=512)
image_gen_steps = st.slider("Stable Diffusion: Inference Steps", value=50)
image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
image_gen_number = st.number_input("Stable Diffusion: Images Generated", value=1)
for file_name in files:
image = Image.open(file_name)
with st.spinner('Captioning Provided Image'):
captioner = transformer(model=caption_model)
caption = captioner(image, max_new_tokens=caption_max_tokens)[0]['generated_text']
captions.append(caption)
st.image(image, caption=caption)
if len(captions) > 0:
st.divider()
description = caption_concat_joiner.join(captions)
pipe = StableDiffusionPipeline.from_pretrained(diffusion_model)
with st.spinner(f'Generating Photo for "{description}"'):
images = pipe(description, height=image_gen_height, width=image_gen_width, num_inference_steps=image_gen_steps, guidance_scale=image_gen_guidance, num_images_per_prompt=image_gen_number).images
for image in images:
st.image(image, caption=description)