keplersj commited on
Commit
a04adb6
·
1 Parent(s): 07e1de8

more knobs

Browse files
Files changed (1) hide show
  1. app.py +20 -8
app.py CHANGED
@@ -3,29 +3,39 @@ from PIL import Image
3
  from transformers import pipeline as transformer
4
  from diffusers import StableDiffusionPipeline
5
 
6
- pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
7
-
8
  captions = []
9
 
10
  with st.sidebar:
11
  files = st.file_uploader("Upload images to blend", accept_multiple_files=True)
12
  st.divider()
13
  caption_model = st.selectbox("Caption Model", [
14
- "ydshieh/vit-gpt2-coco-en",
15
  "Salesforce/blip-image-captioning-large",
16
  "nlpconnect/vit-gpt2-image-captioning",
17
- "microsoft/git-base"
 
18
  ])
 
 
 
19
  st.divider()
 
 
 
 
 
 
 
 
 
20
  image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
21
- image_gen_steps = st.slider("stable Diffusion: Inference Steps", value=50)
22
 
23
  for file_name in files:
24
  image = Image.open(file_name)
25
 
26
  with st.spinner('Captioning Provided Image'):
27
  captioner = transformer(model=caption_model)
28
- caption = captioner(image)[0]['generated_text']
29
 
30
  captions.append(caption)
31
  st.image(image, caption=caption)
@@ -33,10 +43,12 @@ for file_name in files:
33
  if len(captions) > 0:
34
  st.divider()
35
 
36
- description = ' '.join(captions)
 
 
37
 
38
  with st.spinner(f'Generating Photo for "{description}"'):
39
- images = pipe(description, guidance_scale=image_gen_guidance, num_inference_steps=image_gen_steps).images
40
 
41
  for image in images:
42
  st.image(image, caption=description)
 
3
  from transformers import pipeline as transformer
4
  from diffusers import StableDiffusionPipeline
5
 
 
 
6
  captions = []
7
 
8
  with st.sidebar:
9
  files = st.file_uploader("Upload images to blend", accept_multiple_files=True)
10
  st.divider()
11
  caption_model = st.selectbox("Caption Model", [
 
12
  "Salesforce/blip-image-captioning-large",
13
  "nlpconnect/vit-gpt2-image-captioning",
14
+ "microsoft/git-base",
15
+ "ydshieh/vit-gpt2-coco-en"
16
  ])
17
+ caption_max_tokens = st.number_input("Image Caption: Max Tokens")
18
+ st.divider()
19
+ caption_concat_joiner = st.text_input("Caption Concatenation Joiner", value=" ")
20
  st.divider()
21
+ diffusion_model = st.selectbox("Diffusion Model", [
22
+ "stabilityai/stable-diffusion-xl-base-1.0",
23
+ "runwayml/stable-diffusion-v1-5",
24
+ "stabilityai/stable-diffusion-2-1",
25
+ "CompVis/stable-diffusion-v1-4"
26
+ ])
27
+ image_gen_height = st.number_input("Stable Diffusion: Height", value=512)
28
+ image_gen_width = st.number_input("Stable Diffusion: Width", value=512)
29
+ image_gen_steps = st.slider("Stable Diffusion: Inference Steps", value=50)
30
  image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
31
+ image_gen_number = st.number_input("Stable Diffusion: Images Generates", value=1)
32
 
33
  for file_name in files:
34
  image = Image.open(file_name)
35
 
36
  with st.spinner('Captioning Provided Image'):
37
  captioner = transformer(model=caption_model)
38
+ caption = captioner(image, max_new_tokens=caption_max_tokens)[0]['generated_text']
39
 
40
  captions.append(caption)
41
  st.image(image, caption=caption)
 
43
  if len(captions) > 0:
44
  st.divider()
45
 
46
+ description = caption_concat_joiner.join(captions)
47
+
48
+ pipe = StableDiffusionPipeline.from_pretrained(diffusion_model)
49
 
50
  with st.spinner(f'Generating Photo for "{description}"'):
51
+ images = pipe(description, height=image_gen_height, width=image_gen_width, num_inference_steps=image_gen_steps, guidance_scale=image_gen_guidance, num_images_per_prompt=image_gen_number).images
52
 
53
  for image in images:
54
  st.image(image, caption=description)