Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
from keras_cv import models | |
import gradio as gr | |
import tensorflow as tf | |
# load keras model | |
resolution = 512 | |
dreambooth_model = models.StableDiffusion( | |
img_width=resolution, img_height=resolution, jit_compile=True, | |
) | |
loaded_diffusion_model = from_pretrained_keras("keras-dreambooth/dreambooth_diffusion_akitainu") | |
dreambooth_model._diffusion_model = loaded_diffusion_model | |
# generate images | |
def inference(prompt, negative_prompt, num_imgs_to_gen, num_steps, guidance_scale): | |
generated_images = dreambooth_model.text_to_image( | |
prompt, | |
negative_prompt=negative_prompt, | |
batch_size=num_imgs_to_gen, | |
num_steps=num_steps, | |
unconditional_guidance_scale=guidance_scale, | |
) | |
return generated_images | |
# pass function, input type for prompt, the output for multiple images | |
gr.Interface( | |
inference, [ | |
gr.Textbox(label="Positive Prompt", value="a photo of hks## toy"), | |
gr.Textbox(label="Negative Prompt", value="bad anatomy, soft blurry"), | |
gr.Slider(label='Number of gen image', minimum=1, maximum=4, value=2, step=1), | |
gr.Slider(label="Inference Steps",value=100), | |
gr.Number(label='Guidance scale', value=12), | |
], [ | |
gr.Gallery(show_label=False).style(grid=(1,2)), | |
], | |
title="Keras Dreambooth - Aikta dog Demo 🐶", | |
description = "This model has been fine tuned to learn the concept of Akita dog-a famous and very cute dog of Japan. To use this demo, you should have {akt## dog} in the input", | |
examples = [["akt## dog as an anime character in overwatch", "((ugly)), blurry, ((bad anatomy)), duplicate", 4, 100, 12], | |
["cute and adorable cartoon fluffy akt## dog with cap, fantasy, dreamlike, city scenario, surrealism, super cute, trending on artstation", "((ugly)), blurry, ((bad anatomy)), duplicate", 4, 100, 12]], | |
cache_examples=True | |
).queue().launch(debug=True) |