File size: 1,406 Bytes
a7f8f41 ec30580 a7f8f41 c3067f5 a7f8f41 c3067f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import tensorflow as tf
encoder = tf.keras.models.load_model("nst-encoder.h5", compile=False)
decoder = tf.keras.models.load_model("nst-decoder.h5", compile=False)
def get_mean_std(tensor, epsilon=1e-5):
axes = [1, 2]
tensor_mean, tensor_var = tf.nn.moments(tensor, axes=axes, keepdims=True)
tensor_std = tf.sqrt(tensor_var + epsilon)
return tensor_mean, tensor_std
def ada_in(style, content, epsilon=1e-5):
c_mean, c_std = get_mean_std(content)
s_mean, s_std = get_mean_std(style)
t = s_std * (content - c_mean) / c_std + s_mean
return t
def load_resize(image):
image = tf.image.convert_image_dtype(image, dtype="float32")
image = tf.image.resize(image, (224, 224))
return image
def infer(style, content):
style = load_resize(style)
style = style[tf.newaxis, ...]
content = load_resize(content)
content = content[tf.newaxis, ...]
style_enc = encoder(style)
content_enc = encoder(content)
t = ada_in(style=style_enc, content=content_enc)
recons_image = decoder(t)
return recons_image[0].numpy()
dog_example = ['Wassily_Composition.jpg','dog.jpg']
bridge_example = ['wave_composition.jpg', 'bridge.jpg']
iface = gr.Interface(
fn=infer,
inputs=[gr.inputs.Image(label="style"),
gr.inputs.Image(label="content")],
outputs="image", examples = [dog_example, bridge_example]).launch()
|