import numpy as np
import gradio as gr
from PIL import Image
import keras
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/lowlight-enhance-mirnet", compile=False)
examples = ['examples/179.png', 'examples/493.png', 'examples/780.png']
def infer(original_image):
image = keras.utils.img_to_array(original_image)
image = image.astype("float32") / 255.0
image = np.expand_dims(image, axis=0)
output = model.predict(image)
output_image = output[0] * 255.0
output_image = output_image.clip(0, 255)
output_image = output_image.reshape(
(np.shape(output_image)[0], np.shape(output_image)[1], 3)
)
output_image = np.uint32(output_image)
return output_image
iface = gr.Interface(
fn=infer,
title="Low Light Image Enhancement",
description = "Keras Implementation of MIRNet model for light up the dark image 🌆🎆",
inputs=[gr.inputs.Image(label="image", type="pil", shape=(960, 640))],
outputs="image",
examples=examples,
cache_examples=True,
article = "Author: Vu Minh Chien. Based on the keras example from Soumik Rakshit").launch(enable_queue=True)