ariG23498 HF staff commited on
Commit
88c7545
1 Parent(s): 59e7f0c

chore: reformat code and delete assets

Browse files
Files changed (2) hide show
  1. app.py +9 -14
  2. assets/pipeline.png +0 -0
app.py CHANGED
@@ -1,12 +1,10 @@
1
  import streamlit as st
2
  import tensorflow as tf
3
  import numpy as np
4
- import matplotlib.pyplot as plt
5
 
6
  # Setting random seed to obtain reproducible results.
7
  tf.random.set_seed(42)
8
 
9
-
10
  # Initialize global variables.
11
  AUTO = tf.data.AUTOTUNE
12
  BATCH_SIZE = 1
@@ -129,6 +127,7 @@ def map_fn(pose):
129
  )
130
  return (rays_flat, t_vals)
131
 
 
132
  def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
133
  """Generates the RGB image and depth map from model prediction.
134
 
@@ -182,7 +181,6 @@ def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
182
  depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
183
  return (rgb, depth_map)
184
 
185
- nerf_loaded = tf.keras.models.load_model("nerf", compile=False)
186
 
187
  def get_translation_t(t):
188
  """Get the translation matrix for movement in t."""
@@ -243,15 +241,20 @@ def show_rendered_image(r,theta,phi):
243
  )
244
  return(rgb[0], depth[0])
245
 
 
246
  # app.py text matter starts here
247
  st.title('NeRF:3D volumetric rendering with NeRF')
248
  st.markdown("Authors: [Aritra Roy Gosthipathy](https://twitter.com/ariG23498) and [Ritwik Raha](https://twitter.com/ritwik_raha)")
249
  st.markdown("## Description")
250
  st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network.")
251
  st.markdown("## Interactive Demo")
 
 
 
 
252
  # set the values of r theta phi
253
  r = 4.0
254
- theta = st.slider('Enter a value for theta',min_value = 0.0,max_value = 360.0)
255
  phi = -30.0
256
  color, depth = show_rendered_image(r, theta, phi)
257
 
@@ -259,13 +262,11 @@ col1, col2= st.columns(2)
259
 
260
  with col1:
261
  color = tf.keras.utils.array_to_img(color)
262
-
263
- st.image(color, caption = "Color",clamp = True, width = 300)
264
-
265
 
266
  with col2:
267
  depth = tf.keras.utils.array_to_img(depth[..., None])
268
- st.image(depth, caption = "Depth",clamp = True, width = 300)
269
 
270
  st.markdown("## Tutorials")
271
  st.markdown("- [Keras](https://keras.io/examples/vision/nerf/)")
@@ -276,9 +277,3 @@ st.markdown("- [PyImageSearch NeRF 3](https://www.pyimagesearch.com/2021/11/24/c
276
  st.markdown("## Credits")
277
  st.markdown("- [PyImageSearch](https://www.pyimagesearch.com/)")
278
  st.markdown("- [JarvisLabs.ai GPU credits](https://jarvislabs.ai/)")
279
-
280
-
281
-
282
-
283
-
284
-
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  import numpy as np
 
4
 
5
  # Setting random seed to obtain reproducible results.
6
  tf.random.set_seed(42)
7
 
 
8
  # Initialize global variables.
9
  AUTO = tf.data.AUTOTUNE
10
  BATCH_SIZE = 1
 
127
  )
128
  return (rays_flat, t_vals)
129
 
130
+
131
  def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
132
  """Generates the RGB image and depth map from model prediction.
133
 
 
181
  depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
182
  return (rgb, depth_map)
183
 
 
184
 
185
  def get_translation_t(t):
186
  """Get the translation matrix for movement in t."""
 
241
  )
242
  return(rgb[0], depth[0])
243
 
244
+
245
  # app.py text matter starts here
246
  st.title('NeRF:3D volumetric rendering with NeRF')
247
  st.markdown("Authors: [Aritra Roy Gosthipathy](https://twitter.com/ariG23498) and [Ritwik Raha](https://twitter.com/ritwik_raha)")
248
  st.markdown("## Description")
249
  st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network.")
250
  st.markdown("## Interactive Demo")
251
+
252
+ # load the pre-trained model
253
+ nerf_loaded = tf.keras.models.load_model("nerf", compile=False)
254
+
255
  # set the values of r theta phi
256
  r = 4.0
257
+ theta = st.slider("Enter a value for Θ:", min_value=0.0, max_value=360.0)
258
  phi = -30.0
259
  color, depth = show_rendered_image(r, theta, phi)
260
 
 
262
 
263
  with col1:
264
  color = tf.keras.utils.array_to_img(color)
265
+ st.image(color, caption="Color Image", clamp=True, width=300)
 
 
266
 
267
  with col2:
268
  depth = tf.keras.utils.array_to_img(depth[..., None])
269
+ st.image(depth, caption="Depth Map", clamp=True, width=300)
270
 
271
  st.markdown("## Tutorials")
272
  st.markdown("- [Keras](https://keras.io/examples/vision/nerf/)")
 
277
  st.markdown("## Credits")
278
  st.markdown("- [PyImageSearch](https://www.pyimagesearch.com/)")
279
  st.markdown("- [JarvisLabs.ai GPU credits](https://jarvislabs.ai/)")
 
 
 
 
 
 
assets/pipeline.png DELETED
Binary file (333 kB)