chore: reformat code and delete assets
Browse files- app.py +9 -14
- assets/pipeline.png +0 -0
app.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
|
6 |
# Setting random seed to obtain reproducible results.
|
7 |
tf.random.set_seed(42)
|
8 |
|
9 |
-
|
10 |
# Initialize global variables.
|
11 |
AUTO = tf.data.AUTOTUNE
|
12 |
BATCH_SIZE = 1
|
@@ -129,6 +127,7 @@ def map_fn(pose):
|
|
129 |
)
|
130 |
return (rays_flat, t_vals)
|
131 |
|
|
|
132 |
def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
|
133 |
"""Generates the RGB image and depth map from model prediction.
|
134 |
|
@@ -182,7 +181,6 @@ def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
|
|
182 |
depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
|
183 |
return (rgb, depth_map)
|
184 |
|
185 |
-
nerf_loaded = tf.keras.models.load_model("nerf", compile=False)
|
186 |
|
187 |
def get_translation_t(t):
|
188 |
"""Get the translation matrix for movement in t."""
|
@@ -243,15 +241,20 @@ def show_rendered_image(r,theta,phi):
|
|
243 |
)
|
244 |
return(rgb[0], depth[0])
|
245 |
|
|
|
246 |
# app.py text matter starts here
|
247 |
st.title('NeRF:3D volumetric rendering with NeRF')
|
248 |
st.markdown("Authors: [Aritra Roy Gosthipathy](https://twitter.com/ariG23498) and [Ritwik Raha](https://twitter.com/ritwik_raha)")
|
249 |
st.markdown("## Description")
|
250 |
st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network.")
|
251 |
st.markdown("## Interactive Demo")
|
|
|
|
|
|
|
|
|
252 |
# set the values of r theta phi
|
253 |
r = 4.0
|
254 |
-
theta = st.slider(
|
255 |
phi = -30.0
|
256 |
color, depth = show_rendered_image(r, theta, phi)
|
257 |
|
@@ -259,13 +262,11 @@ col1, col2= st.columns(2)
|
|
259 |
|
260 |
with col1:
|
261 |
color = tf.keras.utils.array_to_img(color)
|
262 |
-
|
263 |
-
st.image(color, caption = "Color",clamp = True, width = 300)
|
264 |
-
|
265 |
|
266 |
with col2:
|
267 |
depth = tf.keras.utils.array_to_img(depth[..., None])
|
268 |
-
st.image(depth, caption
|
269 |
|
270 |
st.markdown("## Tutorials")
|
271 |
st.markdown("- [Keras](https://keras.io/examples/vision/nerf/)")
|
@@ -276,9 +277,3 @@ st.markdown("- [PyImageSearch NeRF 3](https://www.pyimagesearch.com/2021/11/24/c
|
|
276 |
st.markdown("## Credits")
|
277 |
st.markdown("- [PyImageSearch](https://www.pyimagesearch.com/)")
|
278 |
st.markdown("- [JarvisLabs.ai GPU credits](https://jarvislabs.ai/)")
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
# Setting random seed to obtain reproducible results.
|
6 |
tf.random.set_seed(42)
|
7 |
|
|
|
8 |
# Initialize global variables.
|
9 |
AUTO = tf.data.AUTOTUNE
|
10 |
BATCH_SIZE = 1
|
|
|
127 |
)
|
128 |
return (rays_flat, t_vals)
|
129 |
|
130 |
+
|
131 |
def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
|
132 |
"""Generates the RGB image and depth map from model prediction.
|
133 |
|
|
|
181 |
depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
|
182 |
return (rgb, depth_map)
|
183 |
|
|
|
184 |
|
185 |
def get_translation_t(t):
|
186 |
"""Get the translation matrix for movement in t."""
|
|
|
241 |
)
|
242 |
return(rgb[0], depth[0])
|
243 |
|
244 |
+
|
245 |
# app.py text matter starts here
|
246 |
st.title('NeRF:3D volumetric rendering with NeRF')
|
247 |
st.markdown("Authors: [Aritra Roy Gosthipathy](https://twitter.com/ariG23498) and [Ritwik Raha](https://twitter.com/ritwik_raha)")
|
248 |
st.markdown("## Description")
|
249 |
st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network.")
|
250 |
st.markdown("## Interactive Demo")
|
251 |
+
|
252 |
+
# load the pre-trained model
|
253 |
+
nerf_loaded = tf.keras.models.load_model("nerf", compile=False)
|
254 |
+
|
255 |
# set the values of r theta phi
|
256 |
r = 4.0
|
257 |
+
theta = st.slider("Enter a value for Θ:", min_value=0.0, max_value=360.0)
|
258 |
phi = -30.0
|
259 |
color, depth = show_rendered_image(r, theta, phi)
|
260 |
|
|
|
262 |
|
263 |
with col1:
|
264 |
color = tf.keras.utils.array_to_img(color)
|
265 |
+
st.image(color, caption="Color Image", clamp=True, width=300)
|
|
|
|
|
266 |
|
267 |
with col2:
|
268 |
depth = tf.keras.utils.array_to_img(depth[..., None])
|
269 |
+
st.image(depth, caption="Depth Map", clamp=True, width=300)
|
270 |
|
271 |
st.markdown("## Tutorials")
|
272 |
st.markdown("- [Keras](https://keras.io/examples/vision/nerf/)")
|
|
|
277 |
st.markdown("## Credits")
|
278 |
st.markdown("- [PyImageSearch](https://www.pyimagesearch.com/)")
|
279 |
st.markdown("- [JarvisLabs.ai GPU credits](https://jarvislabs.ai/)")
|
|
|
|
|
|
|
|
|
|
|
|
assets/pipeline.png
DELETED
Binary file (333 kB)
|
|