Spaces:
Runtime error
Runtime error
Johannes Kolbe
commited on
Commit
·
b28a8cb
1
Parent(s):
0181e70
working space
Browse files- .gitignore +2 -0
- app.py +84 -0
- examples/mnist_3.jpg +0 -0
- examples/mnist_8.jpg +0 -0
- examples/svhn_3.jpeg +0 -0
- examples/svhn_8.jpg +0 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
.mypy_cache
|
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from huggingface_hub import from_pretrained_keras
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
adamatch_model = from_pretrained_keras("johko/adamatch-keras-io")
|
7 |
+
base_model = from_pretrained_keras("johko/wideresnet28-2-mnist")
|
8 |
+
|
9 |
+
|
10 |
+
labels = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
|
11 |
+
|
12 |
+
def predict_image(image, model):
|
13 |
+
image = tf.constant(image)
|
14 |
+
image = tf.reshape(image, [-1, 32, 32, 3])
|
15 |
+
probs_ada_mnist = model.predict(image)[0,:]
|
16 |
+
top_pred = probs_ada_mnist.tolist()
|
17 |
+
return {labels[i]: top_pred[i] for i in range(10)}
|
18 |
+
|
19 |
+
def infer(mnist_img, svhn_img, model):
|
20 |
+
labels_out = []
|
21 |
+
for im in [mnist_img, svhn_img]:
|
22 |
+
labels_out.append(predict_image(im, model))
|
23 |
+
return labels_out
|
24 |
+
|
25 |
+
def infer_ada(mnist_image, svhn_image):
|
26 |
+
return infer(mnist_image, svhn_image, adamatch_model)
|
27 |
+
|
28 |
+
def infer_base(mnist_image, svhn_image):
|
29 |
+
return infer(mnist_image, svhn_image, base_model)
|
30 |
+
|
31 |
+
|
32 |
+
def infer_all(mnist_image, svhn_image):
|
33 |
+
base_res = infer_base(mnist_image, svhn_image)
|
34 |
+
ada_res = infer_ada(mnist_image, svhn_image)
|
35 |
+
return base_res.extend(ada_res)
|
36 |
+
|
37 |
+
article = """<center>
|
38 |
+
|
39 |
+
Authors: <a href='https://twitter.com/johko990' target='_blank'>Johannes Kolbe</a> based on an example by [Sayak Paul](https://twitter.com/RisingSayak) on
|
40 |
+
<a href='https://keras.io/examples/vision/adamatch/' target='_blank'>**keras.io**</a>"""
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
description = """<center>
|
45 |
+
|
46 |
+
This space lets you compare image classification results of identical architecture (WideResNet-2-28) models. The training of one of the models was improved
|
47 |
+
by using AdaMatch as seen in the example on [keras.io](https://keras.io/examples/vision/adamatch/).
|
48 |
+
|
49 |
+
The base model was only trained on the MNIST dataset and shows a low classification accuracy (8.96%) for a different domain dataset like SVHN. The AdaMatch model
|
50 |
+
uses a semi-supervised domain adaption approach to adapt to the SVHN dataset and shows a significantly higher accuracy (26.51%).
|
51 |
+
"""
|
52 |
+
mnist_image_base = gr.inputs.Image(shape=(32, 32))
|
53 |
+
svhn_image_base = gr.inputs.Image(shape=(32, 32))
|
54 |
+
mnist_image_ada = gr.inputs.Image(shape=(32, 32))
|
55 |
+
svhn_image_ada = gr.inputs.Image(shape=(32, 32))
|
56 |
+
|
57 |
+
label_mnist_base = gr.outputs.Label(num_top_classes=3, label="MNIST Prediction Base")
|
58 |
+
label_svhn_base = gr.outputs.Label(num_top_classes=3, label="SVHN Prediction Base")
|
59 |
+
label_mnist_ada = gr.outputs.Label(num_top_classes=3, label="MNIST Prediction AdaMatch")
|
60 |
+
label_svhn_ada = gr.outputs.Label(num_top_classes=3, label="SVHN Prediction AdaMatch")
|
61 |
+
|
62 |
+
|
63 |
+
base_iface = gr.Interface(
|
64 |
+
fn=infer_base,
|
65 |
+
inputs=[mnist_image_base, svhn_image_base],
|
66 |
+
outputs=[label_mnist_base,label_svhn_base]
|
67 |
+
)
|
68 |
+
|
69 |
+
ada_iface = gr.Interface(
|
70 |
+
fn=infer_ada,
|
71 |
+
inputs=[mnist_image_ada, svhn_image_ada],
|
72 |
+
outputs=[label_mnist_ada,label_svhn_ada]
|
73 |
+
)
|
74 |
+
|
75 |
+
gr.Parallel(base_iface,
|
76 |
+
ada_iface,
|
77 |
+
examples=[
|
78 |
+
["examples/mnist_3.jpg", "examples/svhn_3.jpeg"],
|
79 |
+
["examples/mnist_8.jpg", "examples/svhn_8.jpg"]
|
80 |
+
],
|
81 |
+
title="Domain Adaption with AdaMatch",
|
82 |
+
article=article,
|
83 |
+
description=description,
|
84 |
+
).launch()
|
examples/mnist_3.jpg
ADDED
examples/mnist_8.jpg
ADDED
examples/svhn_3.jpeg
ADDED
examples/svhn_8.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tensorflow
|
3 |
+
huggingface_hub
|