import json import numpy as np import tensorflow as tf from tensorflow import keras from huggingface_hub import from_pretrained_keras import gradio as gr latent_dim = 256 num_encoder_tokens = 71 max_encoder_seq_length = 15 num_decoder_tokens = 92 max_decoder_seq_length = 59 with open("input_vocab.json", "r", encoding="utf-8") as f: input_token_index = json.load(f) with open("target_vocab.json", "r", encoding="utf-8") as f: target_token_index = json.load(f) model = from_pretrained_keras("keras-io/char-lstm-seq2seq") # Define sampling models # Restore the model and construct the encoder and decoder. encoder_inputs = model.input[0] # input_1 encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1 encoder_states = [state_h_enc, state_c_enc] encoder_model = keras.Model(encoder_inputs, encoder_states) decoder_inputs = model.input[1] # input_2 decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3") decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4") decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_lstm = model.layers[3] decoder_outputs, state_h_dec, state_c_dec = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs ) decoder_states = [state_h_dec, state_c_dec] decoder_dense = model.layers[4] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = keras.Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states ) # Reverse-lookup token index to decode sequences back to # something readable. reverse_input_char_index = dict((i, char) for char, i in input_token_index.items()) reverse_target_char_index = dict((i, char) for char, i in target_token_index.items()) def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index["\t"]] = 1.0 # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = "" while not stop_condition: output_tokens, h, c = decoder_model.predict([target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length: stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1.0 # Update states states_value = [h, c] return decoded_sentence def translate(input_text): if len(input_text) > max_encoder_seq_length: input_text = input_text[:max_encoder_seq_length] encoder_input_data = np.zeros( (1, max_encoder_seq_length, num_encoder_tokens), dtype="float32" ) for t, char in enumerate(input_text): encoder_input_data[0, t, input_token_index[char]] = 1.0 encoder_input_data[0, t + 1 :, input_token_index[" "]] = 1.0 target_text = decode_sequence(encoder_input_data) return target_text input_box = gr.inputs.Textbox(type="str", label="Input Text") target = gr.outputs.Textbox() iface = gr.Interface( translate, input_box, target, title="Character-level recurrent sequence-to-sequence model", description="Model for Translating English to French using a Character-level recurrent sequence-to-sequence trained with small data.", article='Author: Anurag Singh . Based on the keras example from fchollet', examples=["Hi.", "Wait!", "Go on."], ) iface.launch()