Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Added app.py and requirements.txt
Browse files- app.py +186 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import csv
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
import tensorflow_hub as hub
|
8 |
+
import tensorflow_io as tfio
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from tensorflow import keras
|
11 |
+
from huggingface_hub import from_pretrained_keras
|
12 |
+
|
13 |
+
# Configuration
|
14 |
+
class_names = [
|
15 |
+
"Irish",
|
16 |
+
"Midlands",
|
17 |
+
"Northern",
|
18 |
+
"Scottish",
|
19 |
+
"Southern",
|
20 |
+
"Welsh",
|
21 |
+
"Not a speech",
|
22 |
+
]
|
23 |
+
|
24 |
+
# Download Yamnet model from TF Hub
|
25 |
+
yamnet_model = hub.load("https://tfhub.dev/google/yamnet/1")
|
26 |
+
|
27 |
+
# Download dense model from HF Hub
|
28 |
+
model = from_pretrained_keras(
|
29 |
+
pretrained_model_name_or_path="fbadine/uk_ireland_accent_classification"
|
30 |
+
)
|
31 |
+
|
32 |
+
# Function that reads a wav audio file and resamples it to 16000 Hz
|
33 |
+
# This function is copied from the tutorial:
|
34 |
+
# https://www.tensorflow.org/tutorials/audio/transfer_learning_audio
|
35 |
+
def load_16k_audio_wav(filename):
|
36 |
+
# Read file content
|
37 |
+
file_content = tf.io.read_file(filename)
|
38 |
+
|
39 |
+
# Decode audio wave
|
40 |
+
audio_wav, sample_rate = tf.audio.decode_wav(file_content, desired_channels=1)
|
41 |
+
audio_wav = tf.squeeze(audio_wav, axis=-1)
|
42 |
+
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
|
43 |
+
|
44 |
+
# Resample to 16k
|
45 |
+
audio_wav = tfio.audio.resample(audio_wav, rate_in=sample_rate, rate_out=16000)
|
46 |
+
|
47 |
+
return audio_wav
|
48 |
+
|
49 |
+
|
50 |
+
# Function thatt takes the audio file produced by gr.Audio(source="microphone") and
|
51 |
+
# returns a tensor applying the following transformations:
|
52 |
+
# - Resample to 16000 Hz
|
53 |
+
# - Normalize
|
54 |
+
# - Reshape to [1, -1]
|
55 |
+
def mic_to_tensor(recorded_audio_file):
|
56 |
+
sample_rate, audio = recorded_audio_file
|
57 |
+
|
58 |
+
audio_wav = tf.constant(audio, dtype=tf.float32)
|
59 |
+
if tf.rank(audio_wav) > 1:
|
60 |
+
audio_wav = tf.reduce_mean(audio_wav, axis=1)
|
61 |
+
audio_wav = tfio.audio.resample(audio_wav, rate_in=sample_rate, rate_out=16000)
|
62 |
+
|
63 |
+
audio_wav = tf.divide(audio_wav, tf.reduce_max(tf.abs(audio_wav)))
|
64 |
+
|
65 |
+
return audio_wav
|
66 |
+
|
67 |
+
|
68 |
+
# Function that takes a tensor and applies the following:
|
69 |
+
# - Pass it through Yamnet model to get the embeddings which are the input of the dense model
|
70 |
+
# - Pass the embeddings through the dense model to get the predictions
|
71 |
+
def tensor_to_predictions(audio_tensor):
|
72 |
+
# Get audio embeddings & scores.
|
73 |
+
scores, embeddings, mel_spectrogram = yamnet_model(audio_tensor)
|
74 |
+
|
75 |
+
# Predict the output of the accent recognition model with embeddings as input
|
76 |
+
predictions = model.predict(embeddings)
|
77 |
+
|
78 |
+
return predictions, mel_spectrogram
|
79 |
+
|
80 |
+
|
81 |
+
# Function tha is called when the user clicks "Predict" button. It does the following:
|
82 |
+
# - Calls tensor_to_predictions() to get the predictions
|
83 |
+
# - Generates the top scoring labels
|
84 |
+
# - Generates the top scoring plot
|
85 |
+
def predict_accent(recorded_audio_file, uploaded_audio_file):
|
86 |
+
# Transform input to tensor
|
87 |
+
if recorded_audio_file:
|
88 |
+
audio_tensor = mic_to_tensor(recorded_audio_file)
|
89 |
+
else:
|
90 |
+
audio_tensor = load_16k_audio_wav(uploaded_audio_file)
|
91 |
+
|
92 |
+
# Model Inference
|
93 |
+
predictions, mel_spectrogram = tensor_to_predictions(audio_tensor)
|
94 |
+
|
95 |
+
# Get the infered class
|
96 |
+
infered_class = class_names[predictions.mean(axis=0).argmax()]
|
97 |
+
|
98 |
+
# Generate Output 1 - Accents
|
99 |
+
top_scoring_labels_output = {
|
100 |
+
class_names[i]: float(predictions.mean(axis=0)[i])
|
101 |
+
for i in range(len(class_names))
|
102 |
+
}
|
103 |
+
|
104 |
+
# Generate Output 2
|
105 |
+
top_scoring_plot_output = generate_top_scoring_plot(predictions)
|
106 |
+
|
107 |
+
return [top_scoring_labels_output, top_scoring_plot_output]
|
108 |
+
|
109 |
+
|
110 |
+
# Clears all inputs and outputs when the user clicks "Clear" button
|
111 |
+
def clear_inputs_and_outputs():
|
112 |
+
return [None, None, None, None]
|
113 |
+
|
114 |
+
|
115 |
+
# Function that generates the top scoring plot
|
116 |
+
# This function is copied from the tutorial and adjusted to our needs
|
117 |
+
# https://keras.io/examples/audio/uk_ireland_accent_recognition/tinyurl.com/4a8xn7at
|
118 |
+
def generate_top_scoring_plot(predictions):
|
119 |
+
# Plot and label the model output scores for the top-scoring classes.
|
120 |
+
mean_predictions = np.mean(predictions, axis=0)
|
121 |
+
|
122 |
+
top_class_indices = np.argsort(mean_predictions)[::-1]
|
123 |
+
fig = plt.figure(figsize=(10, 2))
|
124 |
+
plt.imshow(
|
125 |
+
predictions[:, top_class_indices].T,
|
126 |
+
aspect="auto",
|
127 |
+
interpolation="nearest",
|
128 |
+
cmap="gray_r",
|
129 |
+
)
|
130 |
+
|
131 |
+
# patch_padding = (PATCH_WINDOW_SECONDS / 2) / PATCH_HOP_SECONDS
|
132 |
+
# values from the model documentation
|
133 |
+
patch_padding = (0.025 / 2) / 0.01
|
134 |
+
plt.xlim([-patch_padding - 0.5, predictions.shape[0] + patch_padding - 0.5])
|
135 |
+
# Label the top_N classes.
|
136 |
+
yticks = range(0, len(class_names), 1)
|
137 |
+
plt.yticks(yticks, [class_names[top_class_indices[x]] for x in yticks])
|
138 |
+
_ = plt.ylim(-0.5 + np.array([len(class_names), 0]))
|
139 |
+
|
140 |
+
return fig
|
141 |
+
|
142 |
+
|
143 |
+
# Main function
|
144 |
+
if __name__ == "__main__":
|
145 |
+
demo = gr.Blocks()
|
146 |
+
|
147 |
+
with demo:
|
148 |
+
gr.Markdown(
|
149 |
+
"""
|
150 |
+
<center><h1>English speaker accent recognition using Transfer Learning</h1></center> \
|
151 |
+
This space is a demo of an English (precisely UK & Ireland) accent classification model using Keras.<br> \
|
152 |
+
In this space, you can record your voice or upload a wav file and the model will predict the English accent spoken in the audio<br><br>
|
153 |
+
"""
|
154 |
+
)
|
155 |
+
with gr.Row():
|
156 |
+
## Input
|
157 |
+
with gr.Column():
|
158 |
+
mic_input = gr.Audio(source="microphone", label="Record your own voice")
|
159 |
+
upl_input = gr.Audio(
|
160 |
+
source="upload", type="filepath", label="Upload a wav file"
|
161 |
+
)
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
clr_btn = gr.Button(value="Clear", variant="secondary")
|
165 |
+
prd_btn = gr.Button(value="Predict")
|
166 |
+
|
167 |
+
with gr.Column():
|
168 |
+
lbl_output = gr.Label(label="Top Predictions")
|
169 |
+
with gr.Group():
|
170 |
+
gr.Markdown("<center>Prediction per time slot</center>")
|
171 |
+
plt_output = gr.Plot(
|
172 |
+
label="Prediction per time slot", show_label=False
|
173 |
+
)
|
174 |
+
|
175 |
+
clr_btn.click(
|
176 |
+
fn=clear_inputs_and_outputs,
|
177 |
+
inputs=[],
|
178 |
+
outputs=[mic_input, upl_input, lbl_output, plt_output],
|
179 |
+
)
|
180 |
+
prd_btn.click(
|
181 |
+
fn=predict_accent,
|
182 |
+
inputs=[mic_input, upl_input],
|
183 |
+
outputs=[lbl_output, plt_output],
|
184 |
+
)
|
185 |
+
|
186 |
+
demo.launch(debug=True, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
matplotlib
|
3 |
+
tensorflow==2.8.2
|
4 |
+
tensorflow_io==0.25.0
|
5 |
+
tensorflow_hub==0.12.0
|