Spaces:
Build error
Build error
import json | |
import numpy as np | |
import gradio as gr | |
import tensorflow as tf | |
from tensorflow import keras | |
from huggingface_hub.keras_mixin import from_pretrained_keras | |
class CustomNonPaddingTokenLoss(keras.losses.Loss): | |
def __init__(self, name="custom_ner_loss"): | |
super().__init__(name=name) | |
def call(self, y_true, y_pred): | |
loss_fn = keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=keras.losses.Reduction.NONE | |
) | |
loss = loss_fn(y_true, y_pred) | |
mask = tf.cast((y_true > 0), dtype=tf.float32) | |
loss = loss * mask | |
return tf.reduce_sum(loss) / tf.reduce_sum(mask) | |
def lowercase_and_convert_to_ids(tokens): | |
tokens = tf.strings.lower(tokens) | |
return lookup_layer(tokens) | |
def tokenize_and_convert_to_ids(text): | |
tokens = text.split() | |
return lowercase_and_convert_to_ids(tokens) | |
def ner_tagging(text_1): | |
with open("vocab.json",'r') as f: | |
vocab = json.load(f) | |
with open('mapping.json','r') as f: | |
mapping = json.load(f) | |
ner_model = from_pretrained_keras("keras-io/ner-with-transformers", | |
custom_objects={'CustomNonPaddingTokenLoss':CustomNonPaddingTokenLoss}, | |
compile=False) | |
lookup_layer = keras.layers.StringLookup(vocabulary=vocab['tokens']) | |
sample_input = tokenize_and_convert_to_ids(text_1) | |
sample_input = tf.reshape(sample_input, shape=[1, -1]) | |
output = ner_model.predict(sample_input) | |
prediction = np.argmax(output, axis=-1)[0] | |
prediction = [mapping[str(i)] for i in prediction] | |
return prediction | |
text_1 = gr.inputs.Textbox(lines=5) | |
ner_tag = gr.outputs.Textbox() | |
iface = gr.Interface(ner_tagging, | |
inputs=text_1,outputs=ner_tag, examples=[['EU rejects German call to boycott British lamb .'], | |
["Wednesday's U.S. Open draw ceremony revealed that both title holders should run into their first serious opposition in the third round."]]) | |
iface.launch() |