import os os.system('pip install tensorflow') import json import numpy as np import gradio as gr import tensorflow as tf from tensorflow import keras from huggingface_hub.keras_mixin import from_pretrained_keras class CustomNonPaddingTokenLoss(keras.losses.Loss): def __init__(self, name="custom_ner_loss"): super().__init__(name=name) def call(self, y_true, y_pred): loss_fn = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.NONE ) loss = loss_fn(y_true, y_pred) mask = tf.cast((y_true > 0), dtype=tf.float32) loss = loss * mask return tf.reduce_sum(loss) / tf.reduce_sum(mask) def lowercase_and_convert_to_ids(tokens): tokens = tf.strings.lower(tokens) return lookup_layer(tokens) def tokenize_and_convert_to_ids(text): tokens = text.split() return lowercase_and_convert_to_ids(tokens) def ner_tagging(text_1): with open('mapping.json','r') as f: mapping = json.load(f) ner_model = from_pretrained_keras("keras-io/ner-with-transformers", custom_objects={'CustomNonPaddingTokenLoss':CustomNonPaddingTokenLoss}, compile=False) sample_input = tokenize_and_convert_to_ids(text_1) sample_input = tf.reshape(sample_input, shape=[1, -1]) output = ner_model.predict(sample_input) prediction = np.argmax(output, axis=-1)[0] prediction = [mapping[str(i)] for i in prediction] return prediction text_1 = gr.inputs.Textbox(lines=5) ner_tag = gr.outputs.Textbox() with open("vocab.json",'r') as f: vocab = json.load(f) lookup_layer = keras.layers.StringLookup(vocabulary=vocab['tokens']) iface = gr.Interface(ner_tagging, inputs=text_1,outputs=ner_tag, examples=[['EU rejects German call to boycott British lamb .'], ["He said further scientific study was required and if it was found that action was needed it should be taken by the European Union ."]], title="Named Entity Recognition with Transformers", description = "Named Entity Recognition with Transformers on CoNLL2003 Dataset", article = "Author: Rishav Chandra Varma") iface.launch()