Spaces:
Runtime error
Runtime error
added final app setup
Browse files- app.py +6 -5
- constants.py β utils/constants.py +0 -21
- predict.py β utils/predict.py +1 -1
- preprocess.py β utils/preprocess.py +31 -12
app.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from .constants import CSV_HEADER, NUMERIC_FEATURE_NAMES,
|
3 |
-
from .preprocess import create_max_values_map, create_dropdown_default_values_map, create_sample_test_data
|
4 |
-
from .predict import batch_predict, user_input_predict
|
5 |
|
6 |
inputs_list = []
|
7 |
max_values_map = create_max_values_map()
|
8 |
dropdown_default_values_map = create_dropdown_default_values_map()
|
9 |
sample_input_df_val = create_sample_test_data()
|
10 |
|
|
|
11 |
demo = gr.Blocks()
|
12 |
|
13 |
with demo:
|
@@ -20,7 +21,7 @@ with demo:
|
|
20 |
|
21 |
with gr.TabItem("Predict using batch of inputs"):
|
22 |
gr.Markdown("**Input DataFrame** \n")
|
23 |
-
input_df = gr.Dataframe(headers=CSV_HEADER,value=
|
24 |
gr.Markdown("**Output DataFrame** \n")
|
25 |
output_df = gr.Dataframe()
|
26 |
gr.Markdown("**Make Predictions**")
|
@@ -39,7 +40,7 @@ with demo:
|
|
39 |
else:
|
40 |
curr_max_val = max_values_map["max_"+num_variable]
|
41 |
numeric_input = gr.Slider(0,curr_max_val, label=num_variable,step=1)
|
42 |
-
|
43 |
|
44 |
with gr.TabItem("Categorical Inputs"):
|
45 |
gr.Markdown("Choose values for categorical inputs here.")
|
|
|
1 |
import gradio as gr
|
2 |
+
from utils.constants import CSV_HEADER, NUMERIC_FEATURE_NAMES, NUMBER_INPUT_COLS
|
3 |
+
from utils.preprocess import create_max_values_map, create_dropdown_default_values_map, create_sample_test_data, CATEGORICAL_FEATURES_WITH_VOCABULARY
|
4 |
+
from utils.predict import batch_predict, user_input_predict
|
5 |
|
6 |
inputs_list = []
|
7 |
max_values_map = create_max_values_map()
|
8 |
dropdown_default_values_map = create_dropdown_default_values_map()
|
9 |
sample_input_df_val = create_sample_test_data()
|
10 |
|
11 |
+
|
12 |
demo = gr.Blocks()
|
13 |
|
14 |
with demo:
|
|
|
21 |
|
22 |
with gr.TabItem("Predict using batch of inputs"):
|
23 |
gr.Markdown("**Input DataFrame** \n")
|
24 |
+
input_df = gr.Dataframe(headers=CSV_HEADER,value=sample_input_df_val,)
|
25 |
gr.Markdown("**Output DataFrame** \n")
|
26 |
output_df = gr.Dataframe()
|
27 |
gr.Markdown("**Make Predictions**")
|
|
|
40 |
else:
|
41 |
curr_max_val = max_values_map["max_"+num_variable]
|
42 |
numeric_input = gr.Slider(0,curr_max_val, label=num_variable,step=1)
|
43 |
+
inputs_list.append(numeric_input)
|
44 |
|
45 |
with gr.TabItem("Categorical Inputs"):
|
46 |
gr.Markdown("Choose values for categorical inputs here.")
|
constants.py β utils/constants.py
RENAMED
@@ -1,6 +1,3 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from .preprocess import load_test_data
|
3 |
-
|
4 |
# Column names.
|
5 |
CSV_HEADER = [
|
6 |
"age",
|
@@ -67,22 +64,4 @@ NUMERIC_FEATURE_NAMES = [
|
|
67 |
##Cols which will use "Number" component of gradio for taking user input
|
68 |
NUMBER_INPUT_COLS = ['age', 'num_persons_worked_for_employer','weeks_worked_in_year']
|
69 |
|
70 |
-
test_data = load_test_data()
|
71 |
|
72 |
-
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
|
73 |
-
feature_name: sorted([str(value) for value in list(test_data[feature_name].unique())])
|
74 |
-
for feature_name in CSV_HEADER
|
75 |
-
if feature_name
|
76 |
-
not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME])
|
77 |
-
}
|
78 |
-
# All features names.
|
79 |
-
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
|
80 |
-
CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
|
81 |
-
)
|
82 |
-
# Feature default values.
|
83 |
-
COLUMN_DEFAULTS = [
|
84 |
-
[0.0]
|
85 |
-
if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]
|
86 |
-
else ["NA"]
|
87 |
-
for feature_name in CSV_HEADER
|
88 |
-
]
|
|
|
|
|
|
|
|
|
1 |
# Column names.
|
2 |
CSV_HEADER = [
|
3 |
"age",
|
|
|
64 |
##Cols which will use "Number" component of gradio for taking user input
|
65 |
NUMBER_INPUT_COLS = ['age', 'num_persons_worked_for_employer','weeks_worked_in_year']
|
66 |
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
predict.py β utils/predict.py
RENAMED
@@ -12,7 +12,7 @@ def batch_predict(input_data):
|
|
12 |
1. prediction probability for each class
|
13 |
2. actual expected outcome for each entry in the input dataframe
|
14 |
"""
|
15 |
-
input_data_file = "
|
16 |
labels = ['Probability of Income greater than 50000',"Probability of Income less than 50000","Actual Income"]
|
17 |
|
18 |
predictions_df = pd.DataFrame(columns=labels)
|
|
|
12 |
1. prediction probability for each class
|
13 |
2. actual expected outcome for each entry in the input dataframe
|
14 |
"""
|
15 |
+
input_data_file = "input_data.csv"
|
16 |
labels = ['Probability of Income greater than 50000',"Probability of Income less than 50000","Actual Income"]
|
17 |
|
18 |
predictions_df = pd.DataFrame(columns=labels)
|
preprocess.py β utils/preprocess.py
RENAMED
@@ -1,10 +1,37 @@
|
|
1 |
import tensorflow as tf
|
2 |
import pandas as pd
|
3 |
-
from .constants import CSV_HEADER, TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME, NUMERIC_FEATURE_NAMES
|
4 |
|
5 |
|
6 |
##Helper functions for preprocessing of data:
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def process(features, target):
|
9 |
for feature_name in features:
|
10 |
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
|
@@ -44,22 +71,14 @@ def create_dropdown_default_values_map():
|
|
44 |
dropdown_default_values_map["max_"+col] = max_val
|
45 |
return dropdown_default_values_map
|
46 |
|
47 |
-
def load_test_data():
|
48 |
-
|
49 |
-
test_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.test.gz"
|
50 |
-
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)
|
51 |
-
|
52 |
-
return test_data
|
53 |
-
|
54 |
def create_sample_test_data():
|
55 |
|
56 |
-
test_data = load_test_data()
|
57 |
-
|
58 |
test_data["income_level"] = test_data["income_level"].apply(
|
59 |
lambda x: 0 if x == " - 50000." else 1)
|
60 |
|
61 |
sample_df = test_data.loc[:20,:]
|
62 |
-
sample_df_values =
|
63 |
|
64 |
return sample_df_values
|
65 |
-
|
|
|
|
1 |
import tensorflow as tf
|
2 |
import pandas as pd
|
3 |
+
from .constants import CSV_HEADER, TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME, NUMERIC_FEATURE_NAMES
|
4 |
|
5 |
|
6 |
##Helper functions for preprocessing of data:
|
7 |
|
8 |
+
def load_test_data():
|
9 |
+
|
10 |
+
test_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.test.gz"
|
11 |
+
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)
|
12 |
+
|
13 |
+
return test_data
|
14 |
+
|
15 |
+
test_data = load_test_data()
|
16 |
+
|
17 |
+
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
|
18 |
+
feature_name: sorted([str(value) for value in list(test_data[feature_name].unique())])
|
19 |
+
for feature_name in CSV_HEADER
|
20 |
+
if feature_name
|
21 |
+
not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME])
|
22 |
+
}
|
23 |
+
# All features names.
|
24 |
+
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
|
25 |
+
CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
|
26 |
+
)
|
27 |
+
# Feature default values.
|
28 |
+
COLUMN_DEFAULTS = [
|
29 |
+
[0.0]
|
30 |
+
if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]
|
31 |
+
else ["NA"]
|
32 |
+
for feature_name in CSV_HEADER
|
33 |
+
]
|
34 |
+
|
35 |
def process(features, target):
|
36 |
for feature_name in features:
|
37 |
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
|
|
|
71 |
dropdown_default_values_map["max_"+col] = max_val
|
72 |
return dropdown_default_values_map
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def create_sample_test_data():
|
75 |
|
|
|
|
|
76 |
test_data["income_level"] = test_data["income_level"].apply(
|
77 |
lambda x: 0 if x == " - 50000." else 1)
|
78 |
|
79 |
sample_df = test_data.loc[:20,:]
|
80 |
+
sample_df_values = sample_df.values.tolist()
|
81 |
|
82 |
return sample_df_values
|
83 |
+
|
84 |
+
|