remeajayi commited on
Commit
88a4fc6
·
1 Parent(s): 80b8e63
Files changed (1) hide show
  1. app.py +13 -3
app.py CHANGED
@@ -3,10 +3,21 @@ from huggingface_hub import from_pretrained_keras
3
  import pandas as pd
4
  import numpy as np
5
  import json
 
6
 
7
  f = open('scaler.json')
8
  scaler = json.load(f)
9
 
 
 
 
 
 
 
 
 
 
 
10
  def normalize_data(data):
11
  df_test_value = (data - scaler["mean"]) / scaler["std"]
12
  return df_test_value
@@ -27,7 +38,7 @@ def get_anomalies(df_test_value):
27
  test_mae_loss = test_mae_loss.reshape((-1))
28
 
29
  # Detect all the samples which are anomalies.
30
- anomalies = test_mae_loss > threshold
31
  return anomalies
32
 
33
  def plot_anomalies(df_test_value, data, anomalies):
@@ -59,9 +70,8 @@ gr.inputs.File(label="csv file"),
59
  outputs=['plot'],
60
  examples=["art_daily_jumpsup.csv"], title="Anomaly detection of timeseries data",
61
  description = "Anomaly detection of timeseries data.",
62
- article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> /n Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>"
63
 
64
- )
65
 
66
 
67
  iface.launch()
 
3
  import pandas as pd
4
  import numpy as np
5
  import json
6
+ from matplotlib import pyplot as plt
7
 
8
  f = open('scaler.json')
9
  scaler = json.load(f)
10
 
11
+ TIME_STEPS = 288
12
+
13
+ # Generated training sequences for use in the model.
14
+ def create_sequences(values, time_steps=TIME_STEPS):
15
+ output = []
16
+ for i in range(len(values) - time_steps + 1):
17
+ output.append(values[i : (i + time_steps)])
18
+ return np.stack(output)
19
+
20
+
21
  def normalize_data(data):
22
  df_test_value = (data - scaler["mean"]) / scaler["std"]
23
  return df_test_value
 
38
  test_mae_loss = test_mae_loss.reshape((-1))
39
 
40
  # Detect all the samples which are anomalies.
41
+ anomalies = test_mae_loss > scaler["threshold"]
42
  return anomalies
43
 
44
  def plot_anomalies(df_test_value, data, anomalies):
 
70
  outputs=['plot'],
71
  examples=["art_daily_jumpsup.csv"], title="Anomaly detection of timeseries data",
72
  description = "Anomaly detection of timeseries data.",
73
+ article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> /n Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>")
74
 
 
75
 
76
 
77
  iface.launch()