EdoAbati's picture
switch HTML component to MarkDown component
4492fe2
raw
history blame
3.48 kB
from functools import partial
from typing import Dict
import gradio as gr
import numpy as np
import plotly.graph_objects as go
from huggingface_hub import from_pretrained_keras
ROOT_DATA_URL = "https://raw.githubusercontent.com/hfawaz/cd-diagram/master/FordA"
TRAIN_DATA_URL = f"{ROOT_DATA_URL}/FordA_TRAIN.tsv"
TEST_DATA_URL = f"{ROOT_DATA_URL}/FordA_TEST.tsv"
TIMESERIES_LEN = 500
CLASSES = {"Symptom does NOT exist", "Symptom exists"}
model = from_pretrained_keras("EdoAbati/timeseries-classification-from-scratch")
# Read data
def read_data(file_url: str):
data = np.loadtxt(file_url, delimiter="\t")
y = data[:, 0]
x = data[:, 1:]
return x, y.astype(int)
x_train, y_train = read_data(file_url=TRAIN_DATA_URL)
x_test, y_test = read_data(file_url=TEST_DATA_URL)
# Helper functions
def get_prediction(row_index: int, data: np.ndarray) -> Dict[str, float]:
x = data[row_index].reshape((1, TIMESERIES_LEN, 1))
predictions = model.predict(x).flatten()
return {k: float(v) for k, v in zip(CLASSES, predictions)}
def create_plot(row_index: int, dataset_name: str) -> go.Figure:
x = x_train
row = x[row_index]
scatter = go.Scatter(
x=list(range(TIMESERIES_LEN)),
y=row.flatten(),
mode="lines+markers",
)
fig = go.Figure(data=scatter)
fig.update_layout(title=f"Timeseries in row {row_index} of {dataset_name} set ")
return fig
def show_tab_section(data: np.ndarray, dataset_name: str):
num_indexes = data.shape[0]
index = gr.Slider(maximum=num_indexes - 1)
button = gr.Button("Predict")
plot = gr.Plot()
create_plot_data = partial(create_plot, dataset_name=dataset_name)
button.click(create_plot_data, inputs=[index], outputs=[plot])
get_prediction_data = partial(get_prediction, data=data)
label = gr.Label()
button.click(get_prediction_data, inputs=[index], outputs=[label])
# Gradio Demo
title = "# Timeseries classification from scratch"
description = """
Select a time series in the Training or Test dataset and ask the model to classify it!
<br />
<br />
The model was trained on the <a href="http://www.j-wichard.de/publications/FordPaper.pdf" target="_blank">FordA dataset</a>. Each row is a diagnostic session run on an automotive subsystem. In each session 500 samples were collected. Given a time series, the model was trained to identify if a specific symptom exists or it does not exist.
<br />
<br />
<p>
<b>Model:</b> <a href="https://huggingface.co/keras-io/timeseries-classification-from-scratch" target="_blank">https://huggingface.co/keras-io/timeseries-classification-from-scratch</a>
<br />
<b>Keras Example:</b> <a href="https://keras.io/examples/timeseries/timeseries_classification_from_scratch/" target="_blank">https://keras.io/examples/timeseries/timeseries_classification_from_scratch/</a>
</p>
<br />
"""
article = """
<div style="text-align: center;">
Space by <a href="https://github.com/EdAbati" target="_blank">Edoardo Abati</a>
<br />
Keras example by <a href="https://github.com/hfawaz/" target="_blank">hfawaz</a>
</div>
"""
demo = gr.Blocks()
with demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("Training set"):
show_tab_section(data=x_train, dataset_name="Training")
with gr.TabItem("Test set"):
show_tab_section(data=x_test, dataset_name="Test")
gr.Markdown(article)
demo.launch(enable_queue=True)