Spaces:
Runtime error
Runtime error
minor fixes for app.py
Browse files
app.py
CHANGED
@@ -3,27 +3,13 @@ from utils.predict import predict_action
|
|
3 |
import os
|
4 |
import glob
|
5 |
|
6 |
-
##Create
|
7 |
example_list = glob.glob("examples/*")
|
8 |
example_list = list(map(lambda el:[el], example_list))
|
9 |
|
10 |
|
11 |
-
# def load_example(video):
|
12 |
-
# return video[0]
|
13 |
-
|
14 |
demo = gr.Blocks()
|
15 |
|
16 |
-
# input_video = gr.Video(label="Input Video", show_label=True)
|
17 |
-
# output_label = gr.Label(label="Model Output", show_label=True)
|
18 |
-
# output_gif = gr.Image(label="Video Gif", show_label=True)
|
19 |
-
# title = "Video Classification with Transformers"
|
20 |
-
# description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out π€ "
|
21 |
-
|
22 |
-
# article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'
|
23 |
-
|
24 |
-
# gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
|
25 |
-
# title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)
|
26 |
-
|
27 |
|
28 |
with demo:
|
29 |
|
@@ -47,16 +33,14 @@ with demo:
|
|
47 |
submit_button = gr.Button("Submit")
|
48 |
|
49 |
gr.Markdown("**Examples:**")
|
50 |
-
gr.Markdown("The model is trained to classify videos belonging to the following classes:")
|
51 |
-
gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
|
52 |
|
53 |
with gr.Column():
|
54 |
gr.Examples(example_list, [input_video], [output_label,output_gif], predict_action, cache_examples=True)
|
55 |
-
# examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
|
56 |
-
# examples.click(load_example, examples, input_video)
|
57 |
|
58 |
submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
|
59 |
|
60 |
-
gr.Markdown('\n
|
61 |
|
62 |
demo.launch()
|
|
|
3 |
import os
|
4 |
import glob
|
5 |
|
6 |
+
##Create list of examples to be loaded
|
7 |
example_list = glob.glob("examples/*")
|
8 |
example_list = list(map(lambda el:[el], example_list))
|
9 |
|
10 |
|
|
|
|
|
|
|
11 |
demo = gr.Blocks()
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
with demo:
|
15 |
|
|
|
33 |
submit_button = gr.Button("Submit")
|
34 |
|
35 |
gr.Markdown("**Examples:**")
|
36 |
+
gr.Markdown("The model is trained to classify videos belonging to the following classes: CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
|
37 |
+
# gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
|
38 |
|
39 |
with gr.Column():
|
40 |
gr.Examples(example_list, [input_video], [output_label,output_gif], predict_action, cache_examples=True)
|
|
|
|
|
41 |
|
42 |
submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
|
43 |
|
44 |
+
gr.Markdown('\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
|
45 |
|
46 |
demo.launch()
|