pablorodriper's picture
Create app.py
9aa94db
raw
history blame
1.06 kB
import gradio as gr
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
description = "Keras implementation for Video Vision Transformer trained with OrganMNIST3D (CT videos)"
article = "Classes: liver, kidney-right, kidney-left, femur-right, femur-left, bladder, heart, lung-right, lung-left, spleen, pancreas.\n\nAuthor:<a href=\"https://huggingface.co/pablorodriper/\"> Pablo Rodríguez</a>; Based on the keras example by <a href=\"https://keras.io/examples/vision/vivit/\">Aritra Roy Gosthipaty and Ayush Thakur</a>"
title = "Video Vision Transformer on OrganMNIST3D"
def infer(x):
return model.predict(tf.expand_dims(x, axis=0))[0]
model = from_pretrained_keras("keras-io/video-vision-transformer")
labels = ['liver', 'kidney-right', 'kidney-left', 'femur-right', 'femur-left', 'bladder', 'heart', 'lung-right', 'lung-left', 'spleen', 'pancreas']
iface = gr.Interface(
fn = infer,
inputs = "video",
outputs = "number",
description = description,
title = title,
article = article
)
iface.launch()