Spaces:
Build error
Build error
keremsabirli
commited on
Commit
•
aa296e9
1
Parent(s):
83e6a92
added custom pipeline
Browse files- app.py +31 -13
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,25 +1,43 @@
|
|
1 |
-
from
|
|
|
|
|
2 |
import streamlit as st
|
3 |
-
from transformers import pipeline
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
st.title("Image to Code Converter")
|
9 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
10 |
|
11 |
if uploaded_file is not None:
|
12 |
-
#
|
13 |
st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
|
14 |
st.write("")
|
15 |
-
st.write("Converting image to code...")
|
16 |
|
17 |
-
# Convert the file to an image
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
code_result = image_to_code(image)
|
22 |
|
23 |
# Display the code
|
24 |
-
st.code(code_result
|
25 |
-
|
|
|
1 |
+
from PIL import Image as PILImage
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
4 |
import streamlit as st
|
|
|
5 |
|
6 |
+
# Define your custom pipeline function
|
7 |
+
def custom_image_to_text_pipeline(image, processor, model, device):
|
8 |
+
# Preprocess the image
|
9 |
+
inputs = processor(images=image, return_tensors="pt")
|
10 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
11 |
|
12 |
+
# Generate predictions
|
13 |
+
output = model.generate(**inputs)
|
14 |
+
|
15 |
+
# Decode the output to text
|
16 |
+
decoded_output = processor.decode(output[0], skip_special_tokens=True)
|
17 |
+
return decoded_output
|
18 |
+
|
19 |
+
# Load your model and processor
|
20 |
+
device = torch.device("cuda")
|
21 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceM4/VLM_WebSight_finetuned")
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
"HuggingFaceM4/VLM_WebSight_finetuned",
|
24 |
+
trust_remote_code=True,
|
25 |
+
torch_dtype=torch.bfloat16,
|
26 |
+
).to(device)
|
27 |
+
|
28 |
+
# Streamlit UI
|
29 |
st.title("Image to Code Converter")
|
30 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
31 |
|
32 |
if uploaded_file is not None:
|
33 |
+
# Display the uploaded image
|
34 |
st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
|
35 |
st.write("")
|
|
|
36 |
|
37 |
+
# Convert the file to an image and process it
|
38 |
+
with PILImage.open(uploaded_file) as image:
|
39 |
+
st.write("Converting image to code...")
|
40 |
+
code_result = custom_image_to_text_pipeline(image, processor, model, device)
|
|
|
41 |
|
42 |
# Display the code
|
43 |
+
st.code(code_result)
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
-
torch
|
|
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
+
torch
|
4 |
+
pillow
|