Spaces:
Runtime error
Runtime error
kernelmachine
commited on
Commit
·
2c5347a
1
Parent(s):
842e849
update
Browse files- lr/__init__.py +0 -0
- lr/__init__.pyc +0 -0
- lr/__pycache__/__init__.cpython-38.pyc +0 -0
- lr/__pycache__/eval.cpython-38.pyc +0 -0
- lr/__pycache__/hyperparameters.cpython-38.pyc +0 -0
- lr/__pycache__/plot.cpython-38.pyc +0 -0
- lr/__pycache__/train.cpython-38.pyc +0 -0
- lr/__pycache__/util.cpython-38.pyc +0 -0
- lr/eval.py +105 -0
- lr/hyperparameters.py +124 -0
- lr/merge.py +29 -0
- lr/plot.py +84 -0
- lr/train.py +254 -0
- lr/util.py +50 -0
- requirements.txt +1 -0
lr/__init__.py
ADDED
File without changes
|
lr/__init__.pyc
ADDED
Binary file (101 Bytes). View file
|
|
lr/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (142 Bytes). View file
|
|
lr/__pycache__/eval.cpython-38.pyc
ADDED
Binary file (3.22 kB). View file
|
|
lr/__pycache__/hyperparameters.cpython-38.pyc
ADDED
Binary file (4.73 kB). View file
|
|
lr/__pycache__/plot.cpython-38.pyc
ADDED
Binary file (2.3 kB). View file
|
|
lr/__pycache__/train.cpython-38.pyc
ADDED
Binary file (6.78 kB). View file
|
|
lr/__pycache__/util.cpython-38.pyc
ADDED
Binary file (2.45 kB). View file
|
|
lr/eval.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import random
|
7 |
+
import shutil
|
8 |
+
import time
|
9 |
+
from typing import Any, Dict, List, Union
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import ray
|
14 |
+
from sklearn.feature_extraction.text import (CountVectorizer, TfidfTransformer, HashingVectorizer,
|
15 |
+
TfidfVectorizer)
|
16 |
+
from sklearn.linear_model import LogisticRegression
|
17 |
+
from sklearn.metrics import f1_score
|
18 |
+
from sklearn.model_selection import train_test_split
|
19 |
+
from tqdm import tqdm
|
20 |
+
from lr.hyperparameters import SEARCH_SPACE, RandomSearch, HyperparameterSearch
|
21 |
+
from shutil import rmtree
|
22 |
+
|
23 |
+
|
24 |
+
# Create a custom logger
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
logger.setLevel(logging.DEBUG)
|
27 |
+
|
28 |
+
|
29 |
+
def load_model(serialization_dir):
|
30 |
+
with open(os.path.join(serialization_dir, "best_hyperparameters.json"), 'r') as f:
|
31 |
+
hyperparameters = json.load(f)
|
32 |
+
if hyperparameters.pop('stopwords') == 1:
|
33 |
+
stop_words = 'english'
|
34 |
+
else:
|
35 |
+
stop_words = None
|
36 |
+
weight = hyperparameters.pop('weight')
|
37 |
+
if weight == 'binary':
|
38 |
+
binary = True
|
39 |
+
else:
|
40 |
+
binary = False
|
41 |
+
ngram_range = hyperparameters.pop('ngram_range')
|
42 |
+
ngram_range = sorted([int(x) for x in ngram_range.split()])
|
43 |
+
if weight == 'tf-idf':
|
44 |
+
vect = TfidfVectorizer(stop_words=stop_words,
|
45 |
+
lowercase=True,
|
46 |
+
ngram_range=ngram_range)
|
47 |
+
elif weight == 'hash':
|
48 |
+
vect = HashingVectorizer(stop_words=stop_words,lowercase=True,ngram_range=ngram_range)
|
49 |
+
else:
|
50 |
+
vect = CountVectorizer(binary=binary,
|
51 |
+
stop_words=stop_words,
|
52 |
+
lowercase=True,
|
53 |
+
ngram_range=ngram_range)
|
54 |
+
if weight != "hash":
|
55 |
+
with open(os.path.join(serialization_dir, "vocab.json"), 'r') as f:
|
56 |
+
vocab = json.load(f)
|
57 |
+
vect.vocabulary_ = vocab
|
58 |
+
hyperparameters['C'] = float(hyperparameters['C'])
|
59 |
+
hyperparameters['tol'] = float(hyperparameters['tol'])
|
60 |
+
classifier = LogisticRegression(**hyperparameters)
|
61 |
+
if os.path.exists(os.path.join(serialization_dir, "archive", "idf.npy")):
|
62 |
+
vect.idf_ = np.load(os.path.join(serialization_dir, "archive", "idf.npy"))
|
63 |
+
classifier.coef_ = np.load(os.path.join(serialization_dir, "archive", "coef.npy"))
|
64 |
+
classifier.intercept_ = np.load(os.path.join(serialization_dir, "archive", "intercept.npy"))
|
65 |
+
classifier.classes_ = np.load(os.path.join(serialization_dir, "archive", "classes.npy"))
|
66 |
+
return classifier, vect
|
67 |
+
|
68 |
+
|
69 |
+
def eval_lr(test,
|
70 |
+
classifier,
|
71 |
+
vect):
|
72 |
+
start = time.time()
|
73 |
+
X_test = vect.transform(tqdm(test.text, desc="fitting and transforming data"))
|
74 |
+
end = time.time()
|
75 |
+
preds = classifier.predict(X_test)
|
76 |
+
scores = classifier.predict_proba(X_test)
|
77 |
+
return f1_score(test.label, preds, average='macro'), classifier.score(X_test, test.label), scores
|
78 |
+
|
79 |
+
|
80 |
+
if __name__ == '__main__':
|
81 |
+
parser = argparse.ArgumentParser()
|
82 |
+
parser.add_argument('--eval_file', type=str)
|
83 |
+
parser.add_argument('--model', '-m', type=str)
|
84 |
+
parser.add_argument('--output', '-o', type=str)
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
if not os.path.isdir(args.model):
|
91 |
+
print(f"model {args.model} does not exist. Aborting! ")
|
92 |
+
else:
|
93 |
+
clf, vect = load_model(args.model)
|
94 |
+
|
95 |
+
print(f"reading evaluation data at {args.eval_file}...")
|
96 |
+
test = pd.read_json(args.eval_file, lines=True)
|
97 |
+
|
98 |
+
f1, acc, scores = eval_lr(test, clf, vect)
|
99 |
+
if args.output:
|
100 |
+
out = pd.DataFrame({'id': test['id'], 'score': scores.tolist()})
|
101 |
+
out.to_json(args.output, lines=True, orient='records')
|
102 |
+
|
103 |
+
print("================")
|
104 |
+
print(f"F1: {f1}")
|
105 |
+
print(f"accuracy: {acc}")
|
lr/hyperparameters.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Union
|
2 |
+
import numpy as np
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Create a custom logger
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
logger.setLevel(logging.DEBUG)
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class RandomSearch:
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def random_choice(args: List[Any], n: int = 1):
|
16 |
+
"""
|
17 |
+
pick a random element from a set.
|
18 |
+
|
19 |
+
Example:
|
20 |
+
>> sampler = RandomSearch.random_choice(1,2,3)
|
21 |
+
>> sampler()
|
22 |
+
2
|
23 |
+
"""
|
24 |
+
choices = []
|
25 |
+
for arg in args:
|
26 |
+
choices.append(arg)
|
27 |
+
if n == 1:
|
28 |
+
return lambda: np.random.choice(choices, replace=False)
|
29 |
+
else:
|
30 |
+
return lambda: np.random.choice(choices, n, replace=False)
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def random_integer(low: Union[int, float], high: Union[int, float]):
|
34 |
+
"""
|
35 |
+
pick a random integer between two bounds
|
36 |
+
|
37 |
+
Example:
|
38 |
+
>> sampler = RandomSearch.random_integer(1, 10)
|
39 |
+
>> sampler()
|
40 |
+
9
|
41 |
+
"""
|
42 |
+
return lambda: int(np.random.randint(low, high))
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def random_loguniform(low: Union[float, int], high: Union[float, int]):
|
46 |
+
"""
|
47 |
+
pick a random float between two bounds, using loguniform distribution
|
48 |
+
|
49 |
+
Example:
|
50 |
+
>> sampler = RandomSearch.random_loguniform(1e-5, 1e-2)
|
51 |
+
>> sampler()
|
52 |
+
0.0004
|
53 |
+
"""
|
54 |
+
return lambda: np.exp(np.random.uniform(np.log(low), np.log(high)))
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def random_uniform(low: Union[float, int], high: Union[float, int]):
|
58 |
+
"""
|
59 |
+
pick a random float between two bounds, using uniform distribution
|
60 |
+
|
61 |
+
Example:
|
62 |
+
>> sampler = RandomSearch.random_uniform(0, 1)
|
63 |
+
>> sampler()
|
64 |
+
0.01
|
65 |
+
"""
|
66 |
+
return lambda: np.random.uniform(low, high)
|
67 |
+
|
68 |
+
|
69 |
+
class HyperparameterSearch:
|
70 |
+
|
71 |
+
def __init__(self, **kwargs):
|
72 |
+
self.search_space = {}
|
73 |
+
self.lambda_ = lambda: 0
|
74 |
+
for key, val in kwargs.items():
|
75 |
+
self.search_space[key] = val
|
76 |
+
|
77 |
+
def parse(self, val: Any):
|
78 |
+
|
79 |
+
if isinstance(val, (int, np.int)):
|
80 |
+
return int(val)
|
81 |
+
elif isinstance(val, (float, np.float)):
|
82 |
+
return val
|
83 |
+
elif isinstance(val, (np.ndarray, list)):
|
84 |
+
return " ".join(val)
|
85 |
+
elif val is None:
|
86 |
+
return None
|
87 |
+
if isinstance(val, str):
|
88 |
+
return val
|
89 |
+
else:
|
90 |
+
val = val()
|
91 |
+
if isinstance(val, (int, np.int)):
|
92 |
+
return int(val)
|
93 |
+
elif isinstance(val, (np.ndarray, list)):
|
94 |
+
return " ".join(val)
|
95 |
+
else:
|
96 |
+
return val
|
97 |
+
|
98 |
+
|
99 |
+
def sample(self) -> Dict:
|
100 |
+
res = {}
|
101 |
+
for key, val in self.search_space.items():
|
102 |
+
try:
|
103 |
+
res[key] = self.parse(val)
|
104 |
+
except (TypeError, ValueError) as error:
|
105 |
+
logger.error(f"Could not parse key {key} with value {val}. {error}")
|
106 |
+
|
107 |
+
return res
|
108 |
+
|
109 |
+
def update_environment(self, sample) -> None:
|
110 |
+
for key, val in sample.items():
|
111 |
+
os.environ[key] = str(val)
|
112 |
+
|
113 |
+
|
114 |
+
SEARCH_SPACE = {
|
115 |
+
"penalty": RandomSearch.random_choice(["l1", "l2"]),
|
116 |
+
"C": RandomSearch.random_uniform(0, 1),
|
117 |
+
"solver": "liblinear",
|
118 |
+
"multi_class": "auto",
|
119 |
+
"tol": RandomSearch.random_loguniform(10e-5, 10e-3),
|
120 |
+
"stopwords": RandomSearch.random_choice([0, 1]),
|
121 |
+
"weight": RandomSearch.random_choice(["hash"]),
|
122 |
+
"ngram_range": RandomSearch.random_choice(["1 2", "2 3", "1 3"]),
|
123 |
+
"random_state": RandomSearch.random_integer(0, 100000)
|
124 |
+
}
|
lr/merge.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
from typing import Any, Dict, List, Union
|
7 |
+
import sys
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
# Create a custom logger
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logger.setLevel(logging.DEBUG)
|
13 |
+
|
14 |
+
|
15 |
+
if __name__ == '__main__':
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument('--experiments', nargs="+", type=str)
|
18 |
+
parser.add_argument('--output', type=str)
|
19 |
+
|
20 |
+
args = parser.parse_args()
|
21 |
+
dfs = []
|
22 |
+
for experiment in args.experiments:
|
23 |
+
if not os.path.isdir(experiment):
|
24 |
+
print(f"experiment {experiment} does not exist. Aborting! ")
|
25 |
+
sys.exit(1)
|
26 |
+
else:
|
27 |
+
dfs.append(pd.read_json(os.path.join(experiment, "results.jsonl"), lines=True))
|
28 |
+
master = pd.concat(dfs, 0)
|
29 |
+
master.to_json(args.output, lines=True, orient='records')
|
lr/plot.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import random
|
7 |
+
import shutil
|
8 |
+
import time
|
9 |
+
from typing import Any, Dict, List, Union
|
10 |
+
import seaborn as sns
|
11 |
+
import sys
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# Create a custom logger
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
logger.setLevel(logging.DEBUG)
|
22 |
+
|
23 |
+
|
24 |
+
def load_model(hyperparameters):
|
25 |
+
|
26 |
+
if hyperparameters.pop('stopwords') == 1:
|
27 |
+
stop_words = 'english'
|
28 |
+
else:
|
29 |
+
stop_words = None
|
30 |
+
weight = hyperparameters.pop('weight')
|
31 |
+
if weight == 'binary':
|
32 |
+
binary = True
|
33 |
+
else:
|
34 |
+
binary = False
|
35 |
+
ngram_range = hyperparameters.pop('ngram_range')
|
36 |
+
ngram_range = sorted([int(x) for x in ngram_range.split()])
|
37 |
+
if weight == 'tf-idf':
|
38 |
+
vect = TfidfVectorizer(stop_words=stop_words,
|
39 |
+
lowercase=True,
|
40 |
+
ngram_range=ngram_range)
|
41 |
+
else:
|
42 |
+
vect = CountVectorizer(binary=binary,
|
43 |
+
stop_words=stop_words,
|
44 |
+
lowercase=True,
|
45 |
+
ngram_range=ngram_range)
|
46 |
+
hyperparameters['C'] = float(hyperparameters['C'])
|
47 |
+
hyperparameters['tol'] = float(hyperparameters['tol'])
|
48 |
+
classifier = LogisticRegression(**hyperparameters)
|
49 |
+
return classifier, vect
|
50 |
+
|
51 |
+
|
52 |
+
def eval_lr(test,
|
53 |
+
classifier,
|
54 |
+
vect):
|
55 |
+
start = time.time()
|
56 |
+
X_test = vect.fit_transform(tqdm(test.text, desc="fitting and transforming data"))
|
57 |
+
end = time.time()
|
58 |
+
preds = classifier.predict(X_test)
|
59 |
+
return f1_score(test.label, preds, average='macro'), classifier.score(X_test, test.label)
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == '__main__':
|
63 |
+
parser = argparse.ArgumentParser()
|
64 |
+
parser.add_argument('--results_file', '-m', type=str)
|
65 |
+
parser.add_argument('--performance_metric', '-p', type=str)
|
66 |
+
parser.add_argument('--hyperparameter', '-x', type=str)
|
67 |
+
parser.add_argument('--logx', action='store_true')
|
68 |
+
parser.add_argument('--boxplot', action='store_true')
|
69 |
+
|
70 |
+
|
71 |
+
args = parser.parse_args()
|
72 |
+
|
73 |
+
if not os.path.exists(args.results_file):
|
74 |
+
print(f"Results file {args.results_file} does not exist. Aborting! ")
|
75 |
+
sys.exit(1)
|
76 |
+
else:
|
77 |
+
df = pd.read_json(args.results_file, lines=True)
|
78 |
+
if args.boxplot:
|
79 |
+
ax = sns.boxplot(df[args.hyperparameter], df[args.performance_metric])
|
80 |
+
else:
|
81 |
+
ax = sns.scatterplot(df[args.hyperparameter], df[args.performance_metric])
|
82 |
+
if args.logx:
|
83 |
+
ax.set_xscale("log")
|
84 |
+
plt.show()
|
lr/train.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import random
|
7 |
+
import shutil
|
8 |
+
import sys
|
9 |
+
import time
|
10 |
+
from ast import literal_eval
|
11 |
+
from shutil import rmtree
|
12 |
+
from typing import Any, Dict, List, Union
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import ray
|
17 |
+
from sklearn.feature_extraction.text import (CountVectorizer, HashingVectorizer, TfidfVectorizer)
|
18 |
+
from sklearn.linear_model import LogisticRegression
|
19 |
+
from sklearn.metrics import f1_score
|
20 |
+
from sklearn.model_selection import train_test_split
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
from lr.hyperparameters import (SEARCH_SPACE, HyperparameterSearch,
|
24 |
+
RandomSearch)
|
25 |
+
from lr.util import jackknife, replace_bool, stratified_sample
|
26 |
+
|
27 |
+
# Create a custom logger
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
logger.setLevel(logging.DEBUG)
|
30 |
+
|
31 |
+
|
32 |
+
def train_lr(train,
|
33 |
+
dev,
|
34 |
+
test,
|
35 |
+
search_space):
|
36 |
+
master = pd.concat([train, dev], 0)
|
37 |
+
space = HyperparameterSearch(**search_space)
|
38 |
+
sample = space.sample()
|
39 |
+
if sample.pop('stopwords') == 1:
|
40 |
+
stop_words = 'english'
|
41 |
+
else:
|
42 |
+
stop_words = None
|
43 |
+
weight = sample.pop('weight')
|
44 |
+
if weight == 'binary':
|
45 |
+
binary = True
|
46 |
+
else:
|
47 |
+
binary = False
|
48 |
+
ngram_range = sample.pop('ngram_range')
|
49 |
+
ngram_range = sorted([int(x) for x in ngram_range.split()])
|
50 |
+
if weight == 'tf-idf':
|
51 |
+
vect = TfidfVectorizer(stop_words=stop_words,
|
52 |
+
lowercase=True,
|
53 |
+
ngram_range=ngram_range,
|
54 |
+
)
|
55 |
+
elif weight == 'hash':
|
56 |
+
vect = HashingVectorizer(stop_words=stop_words,
|
57 |
+
lowercase=True,
|
58 |
+
ngram_range=ngram_range,
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
vect = CountVectorizer(binary=binary,
|
62 |
+
stop_words=stop_words,
|
63 |
+
lowercase=True,
|
64 |
+
ngram_range=ngram_range,
|
65 |
+
)
|
66 |
+
start = time.time()
|
67 |
+
vect.fit(tqdm(master.text, desc="fitting data", leave=False))
|
68 |
+
X_train = vect.transform(tqdm(train.text, desc="transforming training data", leave=False))
|
69 |
+
X_dev = vect.transform(tqdm(dev.text, desc="transforming dev data", leave=False))
|
70 |
+
if test is not None:
|
71 |
+
X_test = vect.transform(tqdm(test.text, desc="transforming test data", leave=False))
|
72 |
+
|
73 |
+
sample['C'] = float(sample['C'])
|
74 |
+
sample['tol'] = float(sample['tol'])
|
75 |
+
classifier = LogisticRegression(**sample, verbose=True)
|
76 |
+
classifier.fit(X_train, train.label)
|
77 |
+
end = time.time()
|
78 |
+
for k, v in sample.items():
|
79 |
+
if not v:
|
80 |
+
v = str(v)
|
81 |
+
sample[k] = [v]
|
82 |
+
res = pd.DataFrame(sample)
|
83 |
+
preds = classifier.predict(X_dev)
|
84 |
+
if test is not None:
|
85 |
+
test_preds = classifier.predict(X_test)
|
86 |
+
res['dev_f1'] = f1_score(dev.label, preds, average='macro')
|
87 |
+
if test is not None:
|
88 |
+
res['test_f1'] = f1_score(test.label, test_preds, average='macro')
|
89 |
+
res['dev_accuracy'] = classifier.score(X_dev, dev.label)
|
90 |
+
if test is not None:
|
91 |
+
res['test_accuracy'] = classifier.score(X_test, test.label)
|
92 |
+
res['training_duration'] = end - start
|
93 |
+
res['ngram_range'] = str(ngram_range)
|
94 |
+
res['weight'] = weight
|
95 |
+
res['stopwords'] = stop_words
|
96 |
+
return classifier, vect, res
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
parser = argparse.ArgumentParser()
|
101 |
+
parser.add_argument('--train_file', type=str)
|
102 |
+
parser.add_argument('--dev_file', type=str, required=False)
|
103 |
+
parser.add_argument('--test_file', type=str, required=False)
|
104 |
+
parser.add_argument('--search_trials', type=int, default=5)
|
105 |
+
parser.add_argument('--train_subsample', type=int, required=False)
|
106 |
+
parser.add_argument('--stratified', action='store_true')
|
107 |
+
parser.add_argument('--jackknife_partitions', type=int, default=5, required=False)
|
108 |
+
parser.add_argument('--save_jackknife_partitions', action='store_true')
|
109 |
+
parser.add_argument('--serialization_dir', '-s', type=str)
|
110 |
+
parser.add_argument('--override', '-o', action='store_true')
|
111 |
+
parser.add_argument('--evaluate_on_test', '-t', action='store_true')
|
112 |
+
|
113 |
+
|
114 |
+
args = parser.parse_args()
|
115 |
+
|
116 |
+
if not os.path.isdir(args.serialization_dir):
|
117 |
+
os.makedirs(args.serialization_dir)
|
118 |
+
else:
|
119 |
+
if args.override:
|
120 |
+
rmtree(args.serialization_dir)
|
121 |
+
os.makedirs(args.serialization_dir)
|
122 |
+
else:
|
123 |
+
print(f"serialization directory {args.serialization_dir} exists. Aborting! ")
|
124 |
+
|
125 |
+
|
126 |
+
print(f"reading training data at {args.train_file}...")
|
127 |
+
train = pd.read_json(args.train_file, lines=True)
|
128 |
+
if args.train_subsample:
|
129 |
+
if args.stratified:
|
130 |
+
train = stratified_sample(train, "label", args.train_subsample)
|
131 |
+
else:
|
132 |
+
train = train.sample(n=args.train_subsample)
|
133 |
+
|
134 |
+
if args.dev_file:
|
135 |
+
print(f"reading dev data at {args.dev_file}...")
|
136 |
+
dev = pd.read_json(args.dev_file, lines=True)
|
137 |
+
else:
|
138 |
+
print("Dev file not provided, will jackknife training data...")
|
139 |
+
|
140 |
+
if args.evaluate_on_test:
|
141 |
+
if args.test_file:
|
142 |
+
print(f"reading test data at {args.test_file}...")
|
143 |
+
test = pd.read_json(args.test_file, lines=True)
|
144 |
+
else:
|
145 |
+
print("Test file not provided.")
|
146 |
+
sys.exit(1)
|
147 |
+
else:
|
148 |
+
test = None
|
149 |
+
|
150 |
+
num_assignments = args.search_trials
|
151 |
+
num_partitions = args.jackknife_partitions
|
152 |
+
df = pd.DataFrame()
|
153 |
+
current_f1 = 0.0
|
154 |
+
best_classifier = None
|
155 |
+
best_vect = None
|
156 |
+
if args.dev_file:
|
157 |
+
pbar = tqdm(range(num_assignments), desc="search trials", leave=False)
|
158 |
+
for i in pbar:
|
159 |
+
try:
|
160 |
+
classifier, vect, res = train_lr(train, dev, test, SEARCH_SPACE)
|
161 |
+
df = pd.concat([df, res], 0, sort=True)
|
162 |
+
best_f1 = df.dev_f1.max()
|
163 |
+
if res.dev_f1[0] > current_f1:
|
164 |
+
current_f1 = res.dev_f1[0]
|
165 |
+
best_classifier = classifier
|
166 |
+
best_vect = vect
|
167 |
+
pbar.set_description(f"mean +- std dev F1: {df.dev_f1.mean()} +- {df.dev_f1.std()}, max F1: {df.dev_f1.max()}")
|
168 |
+
except KeyboardInterrupt:
|
169 |
+
break
|
170 |
+
else:
|
171 |
+
if args.save_jackknife_partitions:
|
172 |
+
if not os.path.isdir(os.path.join(args.serialization_dir, "jackknife")):
|
173 |
+
os.mkdir(os.path.join(args.serialization_dir, "jackknife"))
|
174 |
+
for ix, (train, dev) in tqdm(enumerate(jackknife(train, num_partitions=num_partitions)),
|
175 |
+
total=num_partitions,
|
176 |
+
leave=False,
|
177 |
+
desc="jackknife partitions"):
|
178 |
+
for i in tqdm(range(num_assignments), desc="search trials", leave=False):
|
179 |
+
classifier, vect, res = train_lr(train, dev, test, SEARCH_SPACE)
|
180 |
+
df = pd.concat([df, res], 0, sort=True)
|
181 |
+
best_f1 = df.dev_f1.max()
|
182 |
+
if res.dev_f1[0] > current_f1:
|
183 |
+
current_f1 = res.dev_f1[0]
|
184 |
+
best_classifier = classifier
|
185 |
+
best_vect = vect
|
186 |
+
df['dataset_reader.sample'] = train.shape[0]
|
187 |
+
df['model.encoder.architecture.type'] = 'logistic regression'
|
188 |
+
if args.save_jackknife_partitions:
|
189 |
+
train.to_json(
|
190 |
+
os.path.join(args.serialization_dir,
|
191 |
+
"jackknife",
|
192 |
+
f"train.{ix}"),
|
193 |
+
lines=True,
|
194 |
+
orient="records")
|
195 |
+
dev.to_json(os.path.join(args.serialization_dir,
|
196 |
+
"jackknife",
|
197 |
+
f"dev.{ix}"),
|
198 |
+
lines=True,
|
199 |
+
orient='records')
|
200 |
+
|
201 |
+
print("DEV STATISTICS")
|
202 |
+
print("================")
|
203 |
+
print(f"mean +- std F1: {df.dev_f1.mean()} +- {df.dev_f1.std()}")
|
204 |
+
print(f"max F1: {df.dev_f1.max()}")
|
205 |
+
print(f"min F1: {df.dev_f1.min()}")
|
206 |
+
print(f"mean +- std accuracy: {df.dev_accuracy.mean()} +- {df.dev_accuracy.std()}")
|
207 |
+
print(f"max accuracy: {df.dev_accuracy.max()}")
|
208 |
+
print(f"min accuracy: {df.dev_accuracy.min()}")
|
209 |
+
print("")
|
210 |
+
print("BEST HYPERPARAMETERS")
|
211 |
+
print(f"=====================")
|
212 |
+
best_hp = df.reset_index().iloc[df.reset_index().dev_f1.idxmax()].to_dict()
|
213 |
+
print(df.reset_index().iloc[df.reset_index().dev_f1.idxmax()])
|
214 |
+
|
215 |
+
if test is not None:
|
216 |
+
print("TEST STATISTICS")
|
217 |
+
print("================")
|
218 |
+
print(f"mean +- std F1: {df.test_f1.mean()} +- {df.test_f1.std()}")
|
219 |
+
print(f"max F1: {df.test_f1.max()}")
|
220 |
+
print(f"min F1: {df.test_f1.min()}")
|
221 |
+
print(f"mean +- std accuracy: {df.test_accuracy.mean()} +- {df.test_accuracy.std()}")
|
222 |
+
print(f"max accuracy: {df.test_accuracy.max()}")
|
223 |
+
print(f"min accuracy: {df.test_accuracy.min()}")
|
224 |
+
|
225 |
+
df.to_json(os.path.join(args.serialization_dir, "results.jsonl"), lines=True, orient='records')
|
226 |
+
with open(os.path.join(args.serialization_dir, "best_hyperparameters.json"), "w+") as f:
|
227 |
+
best_hp = df.reset_index().iloc[df.reset_index().dev_f1.idxmax()].to_dict()
|
228 |
+
for k,v in best_hp.items():
|
229 |
+
if isinstance(v, np.int64):
|
230 |
+
best_hp[k] = int(v)
|
231 |
+
if isinstance(v, str) and "[" in v:
|
232 |
+
v = literal_eval(v)
|
233 |
+
best_hp[k] = f"{v[0]} {v[1]}"
|
234 |
+
best_hp.pop("index")
|
235 |
+
best_hp.pop("dev_accuracy")
|
236 |
+
best_hp.pop("dev_f1")
|
237 |
+
if test is not None:
|
238 |
+
best_hp.pop("test_accuracy")
|
239 |
+
best_hp.pop("test_f1")
|
240 |
+
best_hp.pop("training_duration")
|
241 |
+
json.dump(best_hp, f)
|
242 |
+
with open(os.path.join(args.serialization_dir, "vocab.json"), 'w+') as f:
|
243 |
+
for k,v in best_vect.__dict__['vocabulary_'].items():
|
244 |
+
best_vect.__dict__['vocabulary_'][k] = int(v)
|
245 |
+
json.dump(best_vect.__dict__['vocabulary_'], f)
|
246 |
+
|
247 |
+
os.mkdir(os.path.join(args.serialization_dir, "archive"))
|
248 |
+
try:
|
249 |
+
np.save(os.path.join(args.serialization_dir, "archive", "idf.npy"), best_vect.idf_)
|
250 |
+
except:
|
251 |
+
pass
|
252 |
+
np.save(os.path.join(args.serialization_dir, "archive", "classes.npy"),best_classifier.classes_)
|
253 |
+
np.save(os.path.join(args.serialization_dir, "archive", "coef.npy"),best_classifier.coef_)
|
254 |
+
np.save(os.path.join(args.serialization_dir, "archive", "intercept.npy"), best_classifier.intercept_)
|
lr/util.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
def load_huggingface_tokenizer(tokenizer_path: str):
|
7 |
+
with open(os.path.join(tokenizer_path, 'config.json'), 'r') as f:
|
8 |
+
config = json.load(f)
|
9 |
+
tokenizer_type = config['tokenizer_type']
|
10 |
+
tokenizer = {'BPE': BPETokenizer,
|
11 |
+
'BBPE': ByteLevelBPETokenizer,
|
12 |
+
'BERT': BertWordPieceTokenizer}[tokenizer_type]
|
13 |
+
if tokenizer_type in ['BPE', 'BBPE']:
|
14 |
+
vocab_file = [x for x in os.listdir(tokenizer_path) if 'vocab.json' in x][0]
|
15 |
+
merges_file = [x for x in os.listdir(tokenizer_path) if 'merges.txt' in x][0]
|
16 |
+
tokenizer = tokenizer(vocab_file=os.path.join(tokenizer_path, vocab_file),
|
17 |
+
merges_file=os.path.join(tokenizer_path, merges_file))
|
18 |
+
else:
|
19 |
+
vocab_file = [x for x in os.listdir(tokenizer_path) if 'vocab.txt' in x][0]
|
20 |
+
tokenizer = tokenizer(vocab_file=os.path.join(tokenizer_path, vocab_file))
|
21 |
+
return tokenizer
|
22 |
+
|
23 |
+
|
24 |
+
def jackknife(data, num_partitions=5):
|
25 |
+
data = data.sample(frac=1)
|
26 |
+
splits = np.split(data, range(0, data.shape[0], int(data.shape[0]/num_partitions) )[1:])
|
27 |
+
for i, split in enumerate(splits):
|
28 |
+
train_parts = list(range(0, num_partitions))
|
29 |
+
try:
|
30 |
+
train_parts.remove(i)
|
31 |
+
yield pd.concat([splits[ix] for ix in train_parts], 0), split
|
32 |
+
except ValueError:
|
33 |
+
continue
|
34 |
+
|
35 |
+
|
36 |
+
def stratified_sample(df, col, n_samples):
|
37 |
+
n = min(n_samples, df[col].value_counts().min())
|
38 |
+
rand_int = np.random.randint(1, 10000)
|
39 |
+
df_ = df.groupby(col).apply(lambda x: x.sample(n, random_state=rand_int))
|
40 |
+
df_.index = df_.index.droplevel(0)
|
41 |
+
return df_
|
42 |
+
|
43 |
+
|
44 |
+
def replace_bool(x):
|
45 |
+
if x == 'true':
|
46 |
+
return 1
|
47 |
+
elif x == 'false':
|
48 |
+
return 0
|
49 |
+
else:
|
50 |
+
return x
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn
|