File size: 3,292 Bytes
6cd90b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pascal VOC dataset."""

import numpy as np
from PIL import Image
# pylint: disable=g-importing-member
from torchvision.datasets import VOCSegmentation

CLASS2ID = {
    'Background': 0,
    'Aero plane': 1,
    'Bicycle': 2,
    'Bird': 3,
    'Boat': 4,
    'Bottle': 5,
    'Bus': 6,
    'Car': 7,
    'Cat': 8,
    'Chair': 9,
    'Cow': 10,
    'Dining table': 11,
    'Dog': 12,
    'Horse': 13,
    'Motorbike': 14,
    'Person': 15,
    'Potted plant': 16,
    'Sheep': 17,
    'Sofa': 18,
    'Train': 19,
    'Tv/Monitor': 20,
    # ... add more entries as needed
    'Border': 255,
}


VOC_CLASSES = [
    'aeroplane',
    'bicycle',
    'bird avian',
    'boat',
    'bottle',
    'bus',
    'car',
    'cat',
    'chair seat',
    'cow',
    'diningtable',
    'dog',
    'horse',
    'motorbike',
    'person with clothes,people,human',
    'pottedplant',
    'sheep',
    'sofa',
    'train',
    'tvmonitor screen',
]


BACKGROUND_CATEGORY = [
    'ground',
    'land',
    'grass',
    'tree',
    'building',
    'wall',
    'sky',
    'lake',
    'water',
    'river',
    'sea',
    'keyboard',
    'helmet',
    'cloud',
    'house',
    'mountain',
    'ocean',
    'road',
    'rock',
    'street',
    'valley',
    'bridge',
    'sign',
]


class VOCDataset(VOCSegmentation):
  """Pascal VOC dataset."""

  def __init__(
      self,
      root='/datasets/jianhaoy/PASCAL/',
      year='2012',
      split='val',
      target_transform=None,
      download=False,
      transform=None,
  ):
    super(VOCDataset, self).__init__(
        root=root,
        image_set=split,
        year=year,
        target_transform=transform,
        download=download,
        transform=transform,
    )
    self.idx_to_class = {val: key for (key, val) in CLASS2ID.items()}

  def __getitem__(self, index):
    image_path = self.images[index]
    image = Image.open(image_path).convert('RGB')
    target = np.asarray(Image.open(self.masks[index]), dtype=np.int32)

    _, unique_values = self.process_target(np.array(target))
    classnames = [self.idx_to_class[idx] for idx in unique_values]

    if self.transforms:
      image = self.transform(image)

    return image, str(image_path), target, classnames

  def process_target(self, arr):
    # Set values 0 and 255 to 1
    arr[(arr == 0) | (arr == 255)] = 0

    # Find unique values (excluding 0 and 255)
    unique_values = np.unique(arr[(arr != 0) & (arr != 255)])

    # Create separate masks for each unique value
    masks = [arr == value for value in unique_values]
    masks = [Image.fromarray(arr) for arr in masks]
    masks = [self.target_transform(arr) for arr in masks]

    return masks, unique_values