Spaces:
Runtime error
Runtime error
File size: 16,627 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate CaR on segmentation benchmarks."""
# pylint: disable=g-importing-member
import argparse
import numpy as np
import torch
from torch.utils import tensorboard
import torch.utils.data
from torch.utils.data import Subset
import torchvision.transforms as T
# pylint: disable=g-bad-import-order
from modeling.model.car import CaR
from sam.utils import build_sam_config
from utils.utils import Config
from utils.utils import load_yaml
from utils.utils import MetricLogger
from utils.utils import SmoothedValue
from utils.inference_pipeline import inference_car
from utils.merge_mask import merge_masks_simple
# Datasets
# pylint: disable=g-multiple-import
from data.ade import ADE_THING_CLASS, ADE_STUFF_CLASS, ADE_THING_CLASS_ID, ADE_STUFF_CLASS_ID, ADEDataset
from data.ade847 import ADE_847_THING_CLASS_ID, ADE_847_STUFF_CLASS_ID, ADE_847_THING_CLASS, ADE_847_STUFF_CLASS, ADE847Dataset
from data.coco import COCO_OBJECT_CLASSES, COCODataset
from data.context import PASCAL_CONTEXT_STUFF_CLASS_ID, PASCAL_CONTEXT_THING_CLASS_ID, PASCAL_CONTEXT_STUFF_CLASS, PASCAL_CONTEXT_THING_CLASS, CONTEXTDataset
from data.gres import GReferDataset
from data.pascal459 import PASCAL_459_THING_CLASS_ID, PASCAL_459_STUFF_CLASS_ID, PASCAL_459_THING_CLASS, PASCAL_459_STUFF_CLASS, Pascal459Dataset
from data.refcoco import ReferDataset
from data.voc import VOC_CLASSES, VOCDataset
IMAGE_WIDTH, IMAGE_HEIGHT = 512, 512
# set random seed
torch.manual_seed(0)
np.random.seed(0)
def get_dataset(cfg, ds_name, split, transform, data_root=None):
"""Get dataset."""
data_args = dict(root=data_root) if data_root is not None else {}
if 'refcoco' in ds_name:
splitby = cfg.test.splitby if hasattr(cfg.test, 'splitby') else 'unc'
ds = ReferDataset(
dataset=ds_name,
splitBy=splitby,
split=split,
image_transforms=transform,
target_transforms=transform,
eval_mode=True,
prompts_augment=cfg.test.prompts_augment,
**data_args,
)
elif ds_name == 'gres':
ds = GReferDataset(split=split, transform=transform, **data_args)
elif ds_name == 'voc':
ds = VOCDataset(
year='2012',
split=split,
transform=transform,
target_transform=transform,
**data_args,
)
elif ds_name == 'cocostuff':
ds = COCODataset(transform=transform, **data_args)
elif ds_name == 'context':
ds = CONTEXTDataset(
year='2010', transform=transform, split=split, **data_args
)
elif ds_name == 'ade':
ds = ADEDataset(split=split, transform=transform, **data_args)
elif ds_name == 'pascal_459':
ds = Pascal459Dataset(split=split, transform=transform, **data_args)
elif ds_name == 'ade_847':
ds = ADE847Dataset(split=split, transform=transform, **data_args)
else:
raise ValueError(f'Dataset {ds_name} not implemented')
return ds
def get_transform():
transforms = [
T.Resize((IMAGE_WIDTH, IMAGE_HEIGHT)),
T.ToTensor(),
]
return T.Compose(transforms)
def assign_label(
all_masks,
scores,
stuff_masks=None,
stuff_scores=None,
id_mapping=None,
stuff_id_mapping=None,
):
"""Assign labels."""
label_preds = np.zeros_like(all_masks[0]).astype(np.int32)
if stuff_masks is not None:
sorted_idxs = np.argsort(stuff_scores.detach().cpu().numpy())
stuff_masks = stuff_masks[sorted_idxs]
stuff_scores = stuff_scores.detach().cpu().numpy()[sorted_idxs]
for sorted_idx, mask, score in zip(sorted_idxs, stuff_masks, stuff_scores):
if score > 0:
# convert mask to boolean
mask = mask > 0.5
# assign label
if stuff_id_mapping is not None:
label_preds[mask] = stuff_id_mapping[sorted_idx] + 1
else:
label_preds[mask] = sorted_idx + 1
sorted_idxs = np.argsort(scores.detach().cpu().numpy())
all_masks = all_masks[sorted_idxs]
scores = scores.detach().cpu().numpy()[sorted_idxs]
for sorted_idx, mask, score in zip(sorted_idxs, all_masks, scores):
if score > 0:
# convert mask to boolean
mask = mask > 0.5
# assign label
if id_mapping is not None:
label_preds[mask] = id_mapping[sorted_idx] + 1
else:
label_preds[mask] = sorted_idx + 1
return label_preds
def eval_semantic(
label_space,
algo,
cfg,
model,
image_path,
stuff_label_space=None,
sam_pipeline=None,
):
"""Semantic segmentation evaluation."""
if label_space is None:
raise ValueError(
'label_space must be provided for semantic segmentation evaluation'
)
if algo == 'car':
all_masks, scores = inference_car(
cfg, model, image_path, label_space, sam_pipeline=sam_pipeline
)
if stuff_label_space is not None:
if cfg.test.ds_name == 'context':
thing_id_mapping = PASCAL_CONTEXT_THING_CLASS_ID
stuff_id_mapping = PASCAL_CONTEXT_STUFF_CLASS_ID
elif cfg.test.ds_name == 'ade':
thing_id_mapping = ADE_THING_CLASS_ID
stuff_id_mapping = ADE_STUFF_CLASS_ID
elif cfg.test.ds_name == 'pascal_459':
thing_id_mapping = PASCAL_459_THING_CLASS_ID
stuff_id_mapping = PASCAL_459_STUFF_CLASS_ID
elif cfg.test.ds_name == 'ade_847':
thing_id_mapping = ADE_847_THING_CLASS_ID
stuff_id_mapping = ADE_847_STUFF_CLASS_ID
else:
raise ValueError(f'Dataset {cfg.test.ds_name} not supported')
model.mask_generator.set_bg_cls(label_space)
model.set_visual_prompt_type(cfg.car.stuff_visual_prompt_type)
model.set_bg_factor(cfg.car.stuff_bg_factor)
stuff_masks, stuff_scores = inference_car(
cfg, model, image_path, stuff_label_space, sam_pipeline=sam_pipeline
)
model.mask_generator.set_bg_cls(cfg.car.bg_cls)
model.set_visual_prompt_type(cfg.car.visual_prompt_type)
model.set_bg_factor(cfg.car.bg_factor)
all_masks = all_masks.detach().cpu().numpy()
stuff_masks = stuff_masks.detach().cpu().numpy()
label_preds = assign_label(
all_masks,
scores,
stuff_masks=stuff_masks,
stuff_scores=stuff_scores,
id_mapping=thing_id_mapping,
stuff_id_mapping=stuff_id_mapping,
)
else:
all_masks = all_masks.detach().cpu().numpy()
label_preds = assign_label(all_masks, scores)
return label_preds.squeeze()
else:
raise NotImplementedError(f'algo {algo} not implemented')
def _fast_hist(label_true, label_pred, n_class=21):
mask = (label_true >= 0) & (label_true < n_class)
hist = np.bincount(
n_class * label_true[mask].astype(int) + label_pred[mask],
minlength=n_class**2,
).reshape(n_class, n_class)
return hist
def semantic_iou(label_trues, label_preds, n_class=21, ignore_background=False):
"""Semantic segmentation IOU."""
hist = np.zeros((n_class, n_class))
for lt, lp in zip(label_trues, label_preds):
hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
if ignore_background:
hist = hist[1:, 1:]
acc = np.diag(hist).sum() / hist.sum()
acc_cls = np.diag(hist) / hist.sum(axis=1)
acc_cls = np.nanmean(acc_cls)
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
valid = hist.sum(axis=1) > 0 # added
if valid.sum() == 0:
mean_iu = 0
else:
mean_iu = np.nanmean(iu[valid])
freq = hist.sum(axis=1) / hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
if ignore_background:
cls_iu = dict(zip(range(1, n_class), iu))
else:
cls_iu = dict(zip(range(n_class), iu))
return {
'Pixel Accuracy': acc,
'Mean Accuracy': acc_cls,
'Frequency Weighted IoU': fwavacc,
'mIoU': mean_iu,
'Class IoU': cls_iu,
}
def evaluate(
data_loader,
cfg,
model,
test_cfg,
label_space=None,
stuff_label_space=None,
sam_pipeline=None,
):
"""Run evaluation."""
if (
test_cfg.ds_name
not in ['voc', 'cocostuff', 'context', 'ade', 'pascal_459', 'ade_847']
and test_cfg.seg_mode == 'semantic'
):
raise ValueError((
'Semantic segmentation evaluation is only implemented for voc, '
'context, coco object, ade, pascal459, ade847 dataset'
))
metric_logger = MetricLogger(delimiter=' ')
metric_logger.add_meter(
'mIoU', SmoothedValue(window_size=1, fmt='{value:.4f} ({global_avg:.4f})')
)
# evaluation variables
cum_i, cum_u = 0, 0
eval_seg_iou_list = [0.5, 0.6, 0.7, 0.8, 0.9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_iou = []
header = 'Test:'
# all_masks = []
label_preds, label_gts = [], []
print(len(data_loader))
cc = 0
use_tensorboard = False
if hasattr(cfg.test, 'use_tensorboard'):
use_tensorboard = cfg.test.use_tensorboard
if use_tensorboard:
writer = tensorboard.SummaryWriter(log_dir=cfg.test.output_path)
for data in metric_logger.log_every(data_loader, 1, header):
_, image_paths, target_list, sentences_list = data
# print(type(target_lis))
if not isinstance(target_list, list):
target_list, sentences_list = [target_list], [sentences_list]
for target, sentences in zip(target_list, sentences_list):
image_path = image_paths[0]
# print(image_path)
if test_cfg.seg_mode == 'refer':
all_masks, all_scores = inference_car(
cfg, model, image_path, sentences, sam_pipeline=sam_pipeline
)
# final_mask = merge_masks(all_masks, *target.shape[1:])
final_mask = merge_masks_simple(
all_masks, *target.shape[1:], scores=all_scores
)
intersection, union, cur_iou = compute_iou(final_mask, target)
# cur_iou = IoU(final_mask, target, 0)
metric_logger.update(mIoU=cur_iou)
mean_iou.append(cur_iou)
if use_tensorboard:
writer.add_scalar('Mean IoU', cur_iou, cc)
cum_i += intersection
cum_u += union
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += cur_iou >= eval_seg_iou
seg_total += 1
elif test_cfg.seg_mode == 'semantic':
# torch.cuda.empty_cache()
label_pred = eval_semantic(
label_space,
test_cfg.algo,
cfg,
model,
image_path,
stuff_label_space,
)
label_gt = target.squeeze().cpu().numpy()
cur_iou = semantic_iou(
[label_gt],
[label_pred],
n_class=cfg.test.n_class,
ignore_background=cfg.test.ignore_background,
)['mIoU']
metric_logger.update(mIoU=cur_iou)
label_preds.append(label_pred)
label_gts.append(label_gt)
cc += 1
if test_cfg.seg_mode == 'refer':
mean_iou = np.array(mean_iou)
m_iou = np.mean(mean_iou)
if use_tensorboard:
writer.add_scalar('mIoU', m_iou.item(), len(data_loader))
print('Final results:')
print('Mean IoU is %.2f\n' % (m_iou * 100.0))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % (
str(eval_seg_iou_list[n_eval_iou]),
seg_correct[n_eval_iou] * 100.0 / seg_total,
)
o_iou = cum_i * 100.0 / cum_u
results_str += ' overall IoU = %.2f\n' % o_iou
if use_tensorboard:
writer.add_scalar('oIoU', o_iou, 0)
print(results_str)
elif test_cfg.seg_mode == 'semantic':
iou_score = semantic_iou(
label_gts,
label_preds,
n_class=cfg.test.n_class,
ignore_background=cfg.test.ignore_background,
)
if use_tensorboard:
writer.add_scalar('mIoU', iou_score['mIoU'].item(), len(data_loader))
print(iou_score)
if use_tensorboard:
writer.close()
def compute_iou(pred_seg, gd_seg):
"""Compute IoU."""
intersection = torch.sum(torch.logical_and(pred_seg, gd_seg))
union = torch.sum(torch.logical_or(pred_seg, gd_seg))
iou = intersection * 1.0 / union
if union == 0:
iou = 0
return intersection, union, iou
def list_of_strings(arg):
return [a.strip() for a in arg.split(',')]
# pylint: disable=redefined-outer-name
def parse_args():
"""Parse arguments."""
parser = argparse.ArgumentParser(description='Training')
parser.add_argument(
'--cfg-path',
default='configs/refcoco_test_prompt.yaml',
help='path to configuration file.',
)
parser.add_argument('--index', default=0, type=int, help='split task')
parser.add_argument('--mask_threshold', default=0.0, type=float)
parser.add_argument('--confidence_threshold', default=0.0, type=float)
parser.add_argument('--clipes_threshold', default=0.0, type=float)
parser.add_argument('--stuff_bg_factor', default=0.0, type=float)
parser.add_argument('--bg_factor', default=0.0, type=float)
parser.add_argument('--output_path', default=None, type=str)
parser.add_argument(
'--visual_prompt_type', default=None, type=list_of_strings
)
parser.add_argument(
'--stuff_visual_prompt_type', default=None, type=list_of_strings
)
args = parser.parse_args()
return args
def main(args):
cfg = Config(**load_yaml(args.cfg_path))
if args.mask_threshold > 0:
cfg.car.mask_threshold = args.mask_threshold
if args.confidence_threshold > 0:
cfg.car.confidence_threshold = args.confidence_threshold
if args.clipes_threshold > 0:
cfg.car.clipes_threshold = args.clipes_threshold
if args.bg_factor > 0:
cfg.car.bg_factor = args.bg_factor
if args.stuff_bg_factor > 0:
cfg.car.stuff_bg_factor = args.stuff_bg_factor
if args.output_path is not None:
cfg.test.output_path = args.output_path
if args.visual_prompt_type is not None:
cfg.car.visual_prompt_type = args.visual_prompt_type
if args.stuff_visual_prompt_type is not None:
cfg.car.stuff_visual_prompt_type = args.stuff_visual_prompt_type
try:
data_root = cfg.test.data_root
except ValueError:
data_root = None
dataset_test = get_dataset(
cfg, cfg.test.ds_name, cfg.test.split, get_transform(), data_root
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
stuff_label_space = None
if cfg.test.ds_name == 'voc':
label_space = VOC_CLASSES
elif cfg.test.ds_name == 'cocostuff':
label_space = COCO_OBJECT_CLASSES
elif cfg.test.ds_name == 'context':
# label_space = PASCAL_CONTEXT_CLASSES
label_space = PASCAL_CONTEXT_THING_CLASS
stuff_label_space = PASCAL_CONTEXT_STUFF_CLASS
elif cfg.test.ds_name == 'ade':
label_space = ADE_THING_CLASS
stuff_label_space = ADE_STUFF_CLASS
elif cfg.test.ds_name == 'pascal_459':
label_space = PASCAL_459_THING_CLASS
stuff_label_space = PASCAL_459_STUFF_CLASS
elif cfg.test.ds_name == 'ade_847':
label_space = ADE_847_THING_CLASS
stuff_label_space = ADE_847_STUFF_CLASS
else:
label_space = None
num_chunks, chunk_index = 1, 0
if hasattr(cfg.test, 'num_chunks'):
num_chunks = cfg.test.num_chunks
if hasattr(cfg.test, 'chunk_index'):
chunk_index = cfg.test.chunk_index
# Size of each chunk
chunk_size = len(dataset_test) // num_chunks
# Choose which chunk to load (0-indexed)
# Define a subset of the dataset
subset_indices = range(
chunk_index * chunk_size, (chunk_index + 1) * chunk_size
)
subset_dataset = Subset(dataset_test, indices=subset_indices)
data_loader_test = torch.utils.data.DataLoader(
subset_dataset, batch_size=1, shuffle=False, num_workers=1
)
car_model = CaR(cfg, device=device, seg_mode=cfg.test.seg_mode)
car_model = car_model.to(device)
if not cfg.test.use_pseudo and cfg.test.sam_mask_root is None:
print('Using sam online')
# sam_checkpoint, model_type = build_sam_config(cfg)
build_sam_config(cfg)
evaluate(
data_loader_test,
cfg,
car_model,
test_cfg=cfg.test,
label_space=label_space,
stuff_label_space=stuff_label_space,
)
if __name__ == '__main__':
args = parse_args()
main(args)
|