Spaces:
Runtime error
Runtime error
File size: 6,072 Bytes
6cd90b7 5379278 6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A pipeline for segmenting objects using the SAM model."""
# Copyright 2024 The Google Research Authors.
# This file is based on the SAM (Segment Anything) and HQ-SAM.
#
# https://github.com/facebookresearch/segment-anything
# https://github.com/SysCV/sam-hq/tree/main
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=all
# pylint: disable=g-importing-member
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
from sam.utils import show_anns
from sam.utils import show_box
from sam.utils import show_mask
from sam.utils import show_points
from segment_anything_hq import sam_model_registry
from segment_anything_hq import SamAutomaticMaskGenerator
from segment_anything_hq import SamPredictor
class SAMPipeline:
def __init__(
self,
checkpoint,
model_type,
device="cuda:0",
points_per_side=32,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
box_nms_thresh=0.7,
):
self.checkpoint = checkpoint
self.model_type = model_type
self.device = device
self.sam = sam_model_registry[self.model_type](checkpoint=self.checkpoint)
self.sam.to(device=self.device)
self.load_mask_generator(
points_per_side=points_per_side,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
box_nms_thresh=box_nms_thresh,
)
# Default Prompt Args
self.click_args = {"k": 5, "order": "max", "how_filter": "median"}
self.box_args = None
def load_sam(self):
print("Loading SAM")
sam = sam_model_registry[self.model_type](checkpoint=self.checkpoint)
sam.to(device=self.device)
self.predictor = SamPredictor(sam)
print("Loading Done")
def load_mask_generator(
self,
points_per_side,
pred_iou_thresh,
stability_score_thresh,
box_nms_thresh,
):
print("Loading SAM")
self.mask_generator = SamAutomaticMaskGenerator(
model=self.sam,
points_per_side=points_per_side,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
box_nms_thresh=box_nms_thresh,
crop_n_layers=0,
crop_n_points_downscale_factor=1,
)
print("Loading Done")
# segment single object
def segment_image_single(
self,
image_path,
input_point=None,
input_label=None,
input_box=None,
input_mask=None,
multimask_output=True,
visualize=False,
save_path=None,
fname="",
image=None,
):
if image is None:
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.predictor.set_image(image)
masks, scores, logits = self.predictor.predict(
point_coords=input_point,
point_labels=input_label,
box=input_box,
mask_input=None,
multimask_output=multimask_output,
)
if visualize:
self.visualize(
image,
masks,
scores,
save_path,
input_point=input_point,
input_label=input_label,
input_box=input_box,
input_mask=input_mask,
fname=fname,
)
return masks, scores, logits
def segment_automask(
self,
image_path,
visualize=False,
save_path=None,
image=None,
fname="automask.jpg",
):
if image is None:
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask_list, bbox_list = [], []
masks = self.mask_generator.generate(image)
mask_list.extend([mask["segmentation"] for mask in masks])
bbox_list.extend([mask["bbox"] for mask in masks])
if visualize:
self.visualize_automask(image, masks, save_path, fname=fname)
masks_arr, bbox_arr = np.array(mask_list), np.array(bbox_list)
return masks_arr, bbox_arr, masks
def visualize_automask(self, image, masks, save_path, fname="mask.jpg"):
if not os.path.exists(save_path):
os.makedirs(save_path)
plt.figure(figsize=(20, 20))
plt.imshow(image)
show_anns(masks)
plt.axis("off")
plt.savefig(os.path.join(save_path, fname))
def visualize(
self,
image,
masks,
scores,
save_path,
input_point=None,
input_label=None,
input_box=None,
input_mask=None,
fname="",
):
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_point is not None:
show_points(input_point, input_label, plt.gca())
if input_box is not None:
show_box(input_box, plt.gca())
if input_mask is not None:
show_mask(input_mask[0], plt.gca(), True)
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis("off")
plt.savefig(os.path.join(save_path, f"{fname}{i}.jpg"))
return input_point, input_label, input_box, input_mask
|