Spaces:
Runtime error
Runtime error
File size: 7,360 Bytes
6cd90b7 d91874f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2024 The Google Research Authors.
# This file is based on the SAM (Segment Anything) and HQ-SAM.
#
# https://github.com/facebookresearch/segment-anything
# https://github.com/SysCV/sam-hq/tree/main
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SAM Utilities."""
# pylint: disable=all
# pylint: disable=g-importing-member
import json
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.distance import cdist
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(
pos_points[:, 0],
pos_points[:, 1],
color='green',
marker='*',
s=marker_size,
edgecolor='white',
linewidth=1.25,
)
ax.scatter(
neg_points[:, 0],
neg_points[:, 1],
color='red',
marker='*',
s=marker_size,
edgecolor='white',
linewidth=1.25,
)
def show_box(box, ax):
x0, y0, x1, y1 = box
w, h = x1 - x0, y1 - y0
ax.add_patch(
plt.Rectangle(
(x0, y0), w, h, edgecolor='red', facecolor=(0, 0, 0, 0), lw=2
)
)
def show_anns(anns):
if len(anns) == 0:
return
for index, dictionary in enumerate(anns):
dictionary['id'] = index
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
# polygons = []
# color = []
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:, :, i] = color_mask[i]
ax.imshow(np.dstack((img, m * 0.35)))
# Get the centroid of the mask
mask_y, mask_x = np.nonzero(m)
centroid_x, centroid_y = np.mean(mask_x), np.mean(mask_y)
# Display the mask ID
mask_id = ann['id']
ax.text(
centroid_x,
centroid_y,
str(mask_id),
color='black',
fontsize=48,
weight='bold',
)
# Turn CAM result to SAM prompt
def aggregate_RGB_channel(activation_mask, how='max'):
B, C, H, W = activation_mask.shape
if how == 'max':
res_activation_mask = np.amax(activation_mask, axis=1, keepdims=True)
elif how == 'avr':
res_activation_mask = np.mean(activation_mask, axis=1, keepdims=True)
res_activation_mask = res_activation_mask.reshape(B, 1, H * W)
res_activation_mask = np.squeeze(res_activation_mask, axis=1)
return res_activation_mask
def find_k_points(arr, k, order='max', how_filter='median'):
arr = arr.squeeze(0)
flat_indices = np.argpartition(arr.flatten(), -k)[-k:]
unravel_topk_idx = np.unravel_index(flat_indices, arr.shape)
topk_indices = np.array(unravel_topk_idx).transpose()[:, ::-1]
# print(topk_indices.shape)
if how_filter == 'random':
random_rows = np.random.choice(
topk_indices.shape[0], size=int(round(k / 16)), replace=False
)
topk_indices = topk_indices[random_rows]
elif how_filter == 'median':
distances = cdist(topk_indices, topk_indices)
distances = np.sum(distances, axis=1)
median_distance = np.median(distances)
filtered_idx = [
i for i in range(len(distances)) if distances[i] < median_distance
]
topk_indices = topk_indices[filtered_idx]
return topk_indices
def max_sum_submatrix(matrix):
matrix = np.array(matrix)
H, W = matrix.shape
# Preprocess cumulative sums for rows
matrix[:, 1:] += matrix[:, :-1]
max_sum = float('-inf')
max_rect = (0, 0, 0, 0) # (top, left, bottom, right)
for left in range(W):
for right in range(left, W):
# Apply 1D Kadane's algorithm for the current pair of columns
column_sum = matrix[:, right] - (matrix[:, left - 1] if left > 0 else 0)
max_ending_here = max_so_far = column_sum[0]
start, end = 0, 0
for i in range(1, H):
val = column_sum[i]
if max_ending_here > 0:
max_ending_here += val
else:
max_ending_here = val
start = i
if max_ending_here > max_so_far:
max_so_far = max_ending_here
end = i
if max_so_far > max_sum:
max_sum = max_so_far
max_rect = (start, left, end, right)
return max_sum, max_rect
def CAM2SAMClick(activation_map, k=5, order='max', how_filter='median'):
# activation_map = aggregate_RGB_channel(activation_map)
H, W, C = activation_map.shape
activation_map = activation_map.reshape((1, 1, H, W))
coords = []
for nrow in range(activation_map.shape[0]):
coord = find_k_points(activation_map[nrow], k, order, how_filter)
coords.append(coord)
return coords
def CAM2SAMBox(activation_map):
# print(activation_map.shape)
# activation_map = aggregate_RGB_channel(activation_map)
H, W, C = activation_map.shape
activation_map = activation_map.reshape((1, H, W))
box_coordinates = []
for nrow in range(activation_map.shape[0]):
# print(activation_map[nrow].shape)
arr = activation_map[nrow]
norm_arr = 2 * ((arr - np.min(arr)) / (np.max(arr) - np.min(arr))) - 1
# print(norm_arr.shape)
_, box_coordinate = max_sum_submatrix(norm_arr)
box_coordinates.append(box_coordinate)
return box_coordinates
# Visualize
def visualize_attention(arr, filename):
# Create a figure and axes object
fig, ax = plt.subplots()
# Display the array as an image
im = ax.imshow(arr)
# Add a colorbar
ax.figure.colorbar(im, ax=ax)
# cbar = ax.figure.colorbar(im, ax=ax)
# Save the figure as a PNG file
fig.savefig(filename)
# Build config
# def build_sam_config(config_path):
# with open(config_path, 'r') as infile:
# config = json.load(infile)
# sam_checkpoint = config['model']['sam_checkpoint']
# model_type = config['model']['model_type']
# return sam_checkpoint, model_type
def build_sam_config(config):
sam_checkpoint = config.sam.sam_checkpoint
model_type = config.sam.model_type
return sam_checkpoint, model_type |