Spaces:
Runtime error
Runtime error
File size: 7,554 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions for the project."""
from __future__ import print_function
# pylint: disable=g-importing-member
from collections import defaultdict
from collections import deque
from copy import deepcopy
import datetime
import errno
import os
import sys
import time
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import yaml
# pylint: disable=g-bad-import-order
from data.voc import CLASS2ID
from data.voc import VOC_CLASSES
_MB = 1024.0 * 1024.0
DINO_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
class Config:
def __init__(self, **kwargs):
for key, value in kwargs.items():
if isinstance(value, dict):
setattr(self, key, Config(**value))
else:
setattr(self, key, value)
def load_yaml(filename):
with open(filename) as file:
try:
data = yaml.safe_load(file)
return data
except yaml.YAMLError as e:
print(f"Error while loading YAML file: {e}")
def normalize(x, dim=None, eps=1e-15):
if dim is None:
return (x - x.min()) / (x.max() - x.min())
# Normalize to [0, 1].
numerator = x - x.min(axis=dim, keepdims=True)[0]
denominator = (
x.max(axis=dim, keepdims=True)[0]
- x.min(axis=dim, keepdims=True)[0]
+ eps
)
return numerator / denominator
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a window or the global series average."""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
# def synchronize_between_processes(self):
# """
# Warning: does not synchronize the deque!
# """
# if not is_dist_avail_and_initialized():
# return
# t = torch.tensor([self.count, self.total],
# dtype=torch.float64, device='cuda')
# dist.barrier()
# dist.all_reduce(t)
# t = t.tolist()
# self.count = int(t[0])
# self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value,
)
class MetricLogger(object):
"""Log the metrics."""
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
)
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
"""Log every `print_freq` times."""
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
log_msg = self.delimiter.join([
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
])
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / _MB,
)
)
sys.stdout.flush()
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("{} Total time: {}".format(header, total_time_str))
def mkdir(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def pad_to_square(im):
"""Pad the images to square shape."""
im = deepcopy(im)
width, height = im.size
top_pad = (max(width, height) - height) // 2
bot_pad = max(width, height) - height - top_pad
left_pad = (max(width, height) - width) // 2
right_pad = max(width, height) - width - left_pad
if len(im.mode) == 3:
color = (0, 0, 0)
elif len(im.mode) == 1:
color = 0
else:
raise ValueError(f"Image mode not supported. Image has {im.mode} channels.")
return add_margin(im, top_pad, right_pad, bot_pad, left_pad, color=color)
def add_margin(pil_img, top, right, bottom, left, color=(0, 0, 0)):
"""Ref: https://note.nkmk.me/en/python-pillow-add-margin-expand-canvas/."""
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
# 1 represents the image, 0 represents the padding
pad = [left, top, width, height]
return result, pad
def process_sentence(sentence, ds_name):
"""Dataset specific sentence processing."""
if "refcoco" in ds_name:
sentence = sentence[0].lower()
# get rid of special characters
sentence = sentence.replace('"', "")
sentence = sentence.replace("/", "")
if ds_name == "voc":
if sentence in list(CLASS2ID.keys()):
label_id = CLASS2ID[sentence] - 1
sentence = VOC_CLASSES[label_id]
if not isinstance(sentence, str):
sentence = sentence[0]
return sentence
|