CLIP_as_RNN / app.py
kevinssy's picture
Update app.py
f64074e verified
"""Run a Gradio demo of the CaR model on a single image."""
import os
import numpy as np
import argparse
from functools import reduce
import PIL.Image as Image
import torch
from modeling.model.car import CaR
from utils.utils import Config, load_yaml
import matplotlib.pyplot as plt
import colorsys
from modeling.post_process.post_process import match_masks, generate_masks_from_sam
from sam.sam import SAMPipeline
from sam.utils import build_sam_config
import random
import gradio as gr
# set random seed
random.seed(15)
np.random.seed(0)
torch.manual_seed(0)
# os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_tiny.pth")
CFG_PATH = "configs/demo/pokemon.yaml"
def generate_distinct_colors(n):
colors = []
# generate a random number from 0 to 1
random_color_bias = random.random()
for i in range(n):
hue = float(i) / n
hue += random_color_bias
hue = hue % 1.0
rgb = colorsys.hsv_to_rgb(hue, 1.0, 1.0)
# Convert RGB values from [0, 1] range to [0, 255]
colors.append(tuple(int(val * 255) for val in rgb))
return colors
def overlap_masks(masks):
"""
Overlap masks to generate a single mask for visualization.
Parameters:
- masks: list of np.arrays of shape (H, W) representing binary masks for each class
Returns:
- overlap_mask: list of np.array of shape (H, W) that have no overlaps
"""
overlap_mask = torch.zeros_like(masks[0])
for mask_idx, mask in enumerate(masks):
overlap_mask[mask > 0] = mask_idx + 1
clean_masks = [overlap_mask == mask_idx +
1 for mask_idx in range(len(masks))]
clean_masks = torch.stack(clean_masks, dim=0)
return clean_masks
def visualize_segmentation(image,
masks,
class_names,
alpha=0.7,
y_list=None,
x_list=None):
"""
Visualize segmentation masks on an image.
Parameters:
- image: np.array of shape (H, W, 3) representing the RGB image
- masks: list of np.arrays of shape (H, W) representing binary masks for each class
- class_names: list of strings representing names of each class
- alpha: float, transparency level of masks on the image
Returns:
- visualization: plt.figure object
"""
# Create a figure and axis
fig, ax = plt.subplots(1, figsize=(12, 9))
# Display the image
# Generate distinct colors for each mask
final_mask = np.zeros(
(masks.shape[1], masks.shape[2], 3), dtype=np.float32)
binary_final_mask = np.zeros(
(masks.shape[1], masks.shape[2]), dtype=np.float32)
colors = generate_distinct_colors(len(class_names))
idx = 0
for mask, color, class_name in zip(masks, colors, class_names):
# Overlay the mask
final_mask += np.dstack([mask * c for c in color])
binary_final_mask += mask
# Find a representative point (e.g., centroid) for placing the label
if y_list is None or x_list is None:
y, x = np.argwhere(mask).mean(axis=0)
else:
y, x = y_list[idx], x_list[idx]
ax.text(x, y, class_name, color='white',
fontsize=22, va='center', ha='center',
bbox=dict(facecolor='black', alpha=0.7, edgecolor='none'))
idx += 1
image[binary_final_mask > 0] = image[binary_final_mask > 0] * (1 - alpha)
final_image = image + final_mask * alpha
final_image = final_image.astype(np.uint8)
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
ax.imshow(final_image)
# Remove axis ticks and labels
ax.axis('off')
return fig
def get_sam_masks(cfg,
masks,
image_path=None,
img_sam=None,
pipeline=None):
print("generating sam masks online")
if img_sam is None and image_path is not None:
raise ValueError(
'Please provide either the image path or the image numpy array.')
mask_tensor, mask_list = generate_masks_from_sam(
image_path,
save_path='./',
pipeline=pipeline,
img_sam=img_sam,
visualize=False,
)
mask_tensor = mask_tensor.to(masks.device)
# only conduct sam on masks that is not all zero
attn_map, mask_ids = [], []
for mask_id, mask in enumerate(masks):
if torch.sum(mask) > 0:
attn_map.append(mask.unsqueeze(0))
mask_ids.append(mask_id)
matched_masks = [match_masks(
mask_tensor,
attn,
mask_list,
iom_thres=cfg.car.iom_thres,
min_pred_threshold=cfg.sam.min_pred_threshold)
for attn in attn_map]
for matched_mask, mask_id in zip(matched_masks, mask_ids):
sam_masks = np.array([item['segmentation'] for item in matched_mask])
sam_mask = np.any(sam_masks, axis=0)
masks[mask_id] = torch.from_numpy(sam_mask).to(masks.device)
return masks
def load_sam(cfg, device):
sam_checkpoint, model_type = build_sam_config(cfg)
pipeline = SAMPipeline(
sam_checkpoint,
model_type,
device=device,
points_per_side=cfg.sam.points_per_side,
pred_iou_thresh=cfg.sam.pred_iou_thresh,
stability_score_thresh=cfg.sam.stability_score_thresh,
box_nms_thresh=cfg.sam.box_nms_thresh,
)
return pipeline
def generate(img,
class_names,
clip_thresh,
mask_thresh,
confidence_thresh,
post_process,
stability_score_thresh,
box_nms_thresh,
iom_thres,
min_pred_threshold):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cfg = Config(**load_yaml(CFG_PATH))
cfg.car.clipes_threshold = clip_thresh
cfg.car.mask_threshold = mask_thresh
cfg.car.confidence_threshold = confidence_thresh
cfg.sam.stability_score_thresh = stability_score_thresh
cfg.sam.box_nms_thresh = box_nms_thresh
cfg.car.iom_thres = iom_thres
cfg.sam.min_pred_threshold = min_pred_threshold
car_model = CaR(cfg,
visualize=True,
seg_mode='semantic',
device=device)
# resize image by dividing 2 if the size is larger than 1000
if img.size[0] > 1000:
img = img.resize((img.size[0] // 2, img.size[1] // 2))
y_list, x_list = None, None
class_names = class_names.split(',')
sentences = class_names
# class_names = ['the women chatting', 'the women chatting', 'table', 'fridge', 'cooking pot']
pseudo_masks, _ = car_model(img, sentences)
if post_process == 'SAM':
pipeline = load_sam(cfg, device)
pseudo_masks = get_sam_masks(
cfg,
pseudo_masks,
image_path=None,
img_sam=np.array(img),
pipeline=pipeline)
pseudo_masks = overlap_masks(pseudo_masks)
# visualize segmentation masks
demo_fig = visualize_segmentation(np.array(img),
pseudo_masks.detach().cpu().numpy(),
class_names,
y_list=y_list,
x_list=x_list)
# convert the demo figure to an pil image
demo_fig.canvas.draw()
demo_img = np.array(demo_fig.canvas.renderer._renderer)
demo_img = Image.fromarray(demo_img)
return demo_img
if __name__ == "__main__":
parser = argparse.ArgumentParser('car')
parser.add_argument("--cfg-path",
default='configs/local_car.yaml',
help="path to configuration file.")
args = parser.parse_args()
demo = gr.Interface(generate,
inputs=[gr.Image(label="upload an image", type="pil"),
"text",
gr.Slider(label="clip thresh",
minimum=0,
maximum=1,
value=0.4,
step=0.1,
info="the threshold for clip-es adversarial heatmap clipping"),
gr.Slider(label="mask thresh",
minimum=0,
maximum=1,
value=0.6,
step=0.1,
info="the binariation threshold for the mask to generate visual prompt"),
gr.Slider(label="confidence thresh",
minimum=0,
maximum=1,
value=0,
step=0.1,
info="the threshold for filtering the proposed classes"),
gr.Radio(["CRF", "SAM"], label="post process",
value="CRF", info="choose the post process method"),
gr.Slider(label="stability score thresh for SAM mask proposal \n(only when SAM is chosen for post process)",
minimum=0,
maximum=1,
value=0.95,
step=0.1),
gr.Slider(label="box nms thresh for SAM mask proposal \n(only when SAM is chosen for post process)",
minimum=0, maximum=1, value=0.7, step=0.1),
gr.Slider(label="intersection over mask threshold for SAM mask proposal \n(only when SAM is chosen for post process)",
minimum=0, maximum=1, value=0.5, step=0.1),
gr.Slider(label="minimum prediction threshold for SAM mask proposal \n(only when SAM is chosen for post process)", minimum=0, maximum=1, value=0.03, step=0.01)],
outputs="image",
title="CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor",
description="This is the official demo for CLIP as RNN. Please upload an image and type in the class names (connected by ',' e.g. cat,dog,human) you want to segment. The model will generate the segmentation masks for the input image. You can also adjust the clip thresh, mask thresh and confidence thresh to get better results.",
examples=[["demo/pokemon.jpg", "Pikachu,Eevee", 0.6, 0.6, 0, "CRF", 0.95, 0.7, 0.6, 0.01],
["demo/Eiffel_tower.jpg", "Eiffel Tower",
0.6, 0.6, 0, "CRF", 0.95, 0.7, 0.6, 0.01],
["demo/superhero.jpeg", "Batman,Superman,Wonder Woman,Flash,Cyborg",
0.6, 0.6, 0, "CRF", 0.89, 0.65, 0.5, 0.03],
])
demo.launch(share=True)
# device = "cuda" if torch.cuda.is_available() else "cpu"