Spaces:
Runtime error
Runtime error
"""Run a Gradio demo of the CaR model on a single image.""" | |
import os | |
import numpy as np | |
import argparse | |
from functools import reduce | |
import PIL.Image as Image | |
import torch | |
from modeling.model.car import CaR | |
from utils.utils import Config, load_yaml | |
import matplotlib.pyplot as plt | |
import colorsys | |
from modeling.post_process.post_process import match_masks, generate_masks_from_sam | |
from sam.sam import SAMPipeline | |
from sam.utils import build_sam_config | |
import random | |
import gradio as gr | |
# set random seed | |
random.seed(15) | |
np.random.seed(0) | |
torch.manual_seed(0) | |
# os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth") | |
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_tiny.pth") | |
CFG_PATH = "configs/demo/pokemon.yaml" | |
def generate_distinct_colors(n): | |
colors = [] | |
# generate a random number from 0 to 1 | |
random_color_bias = random.random() | |
for i in range(n): | |
hue = float(i) / n | |
hue += random_color_bias | |
hue = hue % 1.0 | |
rgb = colorsys.hsv_to_rgb(hue, 1.0, 1.0) | |
# Convert RGB values from [0, 1] range to [0, 255] | |
colors.append(tuple(int(val * 255) for val in rgb)) | |
return colors | |
def overlap_masks(masks): | |
""" | |
Overlap masks to generate a single mask for visualization. | |
Parameters: | |
- masks: list of np.arrays of shape (H, W) representing binary masks for each class | |
Returns: | |
- overlap_mask: list of np.array of shape (H, W) that have no overlaps | |
""" | |
overlap_mask = torch.zeros_like(masks[0]) | |
for mask_idx, mask in enumerate(masks): | |
overlap_mask[mask > 0] = mask_idx + 1 | |
clean_masks = [overlap_mask == mask_idx + | |
1 for mask_idx in range(len(masks))] | |
clean_masks = torch.stack(clean_masks, dim=0) | |
return clean_masks | |
def visualize_segmentation(image, | |
masks, | |
class_names, | |
alpha=0.7, | |
y_list=None, | |
x_list=None): | |
""" | |
Visualize segmentation masks on an image. | |
Parameters: | |
- image: np.array of shape (H, W, 3) representing the RGB image | |
- masks: list of np.arrays of shape (H, W) representing binary masks for each class | |
- class_names: list of strings representing names of each class | |
- alpha: float, transparency level of masks on the image | |
Returns: | |
- visualization: plt.figure object | |
""" | |
# Create a figure and axis | |
fig, ax = plt.subplots(1, figsize=(12, 9)) | |
# Display the image | |
# Generate distinct colors for each mask | |
final_mask = np.zeros( | |
(masks.shape[1], masks.shape[2], 3), dtype=np.float32) | |
binary_final_mask = np.zeros( | |
(masks.shape[1], masks.shape[2]), dtype=np.float32) | |
colors = generate_distinct_colors(len(class_names)) | |
idx = 0 | |
for mask, color, class_name in zip(masks, colors, class_names): | |
# Overlay the mask | |
final_mask += np.dstack([mask * c for c in color]) | |
binary_final_mask += mask | |
# Find a representative point (e.g., centroid) for placing the label | |
if y_list is None or x_list is None: | |
y, x = np.argwhere(mask).mean(axis=0) | |
else: | |
y, x = y_list[idx], x_list[idx] | |
ax.text(x, y, class_name, color='white', | |
fontsize=22, va='center', ha='center', | |
bbox=dict(facecolor='black', alpha=0.7, edgecolor='none')) | |
idx += 1 | |
image[binary_final_mask > 0] = image[binary_final_mask > 0] * (1 - alpha) | |
final_image = image + final_mask * alpha | |
final_image = final_image.astype(np.uint8) | |
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0) | |
ax.imshow(final_image) | |
# Remove axis ticks and labels | |
ax.axis('off') | |
return fig | |
def get_sam_masks(cfg, | |
masks, | |
image_path=None, | |
img_sam=None, | |
pipeline=None): | |
print("generating sam masks online") | |
if img_sam is None and image_path is not None: | |
raise ValueError( | |
'Please provide either the image path or the image numpy array.') | |
mask_tensor, mask_list = generate_masks_from_sam( | |
image_path, | |
save_path='./', | |
pipeline=pipeline, | |
img_sam=img_sam, | |
visualize=False, | |
) | |
mask_tensor = mask_tensor.to(masks.device) | |
# only conduct sam on masks that is not all zero | |
attn_map, mask_ids = [], [] | |
for mask_id, mask in enumerate(masks): | |
if torch.sum(mask) > 0: | |
attn_map.append(mask.unsqueeze(0)) | |
mask_ids.append(mask_id) | |
matched_masks = [match_masks( | |
mask_tensor, | |
attn, | |
mask_list, | |
iom_thres=cfg.car.iom_thres, | |
min_pred_threshold=cfg.sam.min_pred_threshold) | |
for attn in attn_map] | |
for matched_mask, mask_id in zip(matched_masks, mask_ids): | |
sam_masks = np.array([item['segmentation'] for item in matched_mask]) | |
sam_mask = np.any(sam_masks, axis=0) | |
masks[mask_id] = torch.from_numpy(sam_mask).to(masks.device) | |
return masks | |
def load_sam(cfg, device): | |
sam_checkpoint, model_type = build_sam_config(cfg) | |
pipeline = SAMPipeline( | |
sam_checkpoint, | |
model_type, | |
device=device, | |
points_per_side=cfg.sam.points_per_side, | |
pred_iou_thresh=cfg.sam.pred_iou_thresh, | |
stability_score_thresh=cfg.sam.stability_score_thresh, | |
box_nms_thresh=cfg.sam.box_nms_thresh, | |
) | |
return pipeline | |
def generate(img, | |
class_names, | |
clip_thresh, | |
mask_thresh, | |
confidence_thresh, | |
post_process, | |
stability_score_thresh, | |
box_nms_thresh, | |
iom_thres, | |
min_pred_threshold): | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
cfg = Config(**load_yaml(CFG_PATH)) | |
cfg.car.clipes_threshold = clip_thresh | |
cfg.car.mask_threshold = mask_thresh | |
cfg.car.confidence_threshold = confidence_thresh | |
cfg.sam.stability_score_thresh = stability_score_thresh | |
cfg.sam.box_nms_thresh = box_nms_thresh | |
cfg.car.iom_thres = iom_thres | |
cfg.sam.min_pred_threshold = min_pred_threshold | |
car_model = CaR(cfg, | |
visualize=True, | |
seg_mode='semantic', | |
device=device) | |
# resize image by dividing 2 if the size is larger than 1000 | |
if img.size[0] > 1000: | |
img = img.resize((img.size[0] // 2, img.size[1] // 2)) | |
y_list, x_list = None, None | |
class_names = class_names.split(',') | |
sentences = class_names | |
# class_names = ['the women chatting', 'the women chatting', 'table', 'fridge', 'cooking pot'] | |
pseudo_masks, _ = car_model(img, sentences) | |
if post_process == 'SAM': | |
pipeline = load_sam(cfg, device) | |
pseudo_masks = get_sam_masks( | |
cfg, | |
pseudo_masks, | |
image_path=None, | |
img_sam=np.array(img), | |
pipeline=pipeline) | |
pseudo_masks = overlap_masks(pseudo_masks) | |
# visualize segmentation masks | |
demo_fig = visualize_segmentation(np.array(img), | |
pseudo_masks.detach().cpu().numpy(), | |
class_names, | |
y_list=y_list, | |
x_list=x_list) | |
# convert the demo figure to an pil image | |
demo_fig.canvas.draw() | |
demo_img = np.array(demo_fig.canvas.renderer._renderer) | |
demo_img = Image.fromarray(demo_img) | |
return demo_img | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser('car') | |
parser.add_argument("--cfg-path", | |
default='configs/local_car.yaml', | |
help="path to configuration file.") | |
args = parser.parse_args() | |
demo = gr.Interface(generate, | |
inputs=[gr.Image(label="upload an image", type="pil"), | |
"text", | |
gr.Slider(label="clip thresh", | |
minimum=0, | |
maximum=1, | |
value=0.4, | |
step=0.1, | |
info="the threshold for clip-es adversarial heatmap clipping"), | |
gr.Slider(label="mask thresh", | |
minimum=0, | |
maximum=1, | |
value=0.6, | |
step=0.1, | |
info="the binariation threshold for the mask to generate visual prompt"), | |
gr.Slider(label="confidence thresh", | |
minimum=0, | |
maximum=1, | |
value=0, | |
step=0.1, | |
info="the threshold for filtering the proposed classes"), | |
gr.Radio(["CRF", "SAM"], label="post process", | |
value="CRF", info="choose the post process method"), | |
gr.Slider(label="stability score thresh for SAM mask proposal \n(only when SAM is chosen for post process)", | |
minimum=0, | |
maximum=1, | |
value=0.95, | |
step=0.1), | |
gr.Slider(label="box nms thresh for SAM mask proposal \n(only when SAM is chosen for post process)", | |
minimum=0, maximum=1, value=0.7, step=0.1), | |
gr.Slider(label="intersection over mask threshold for SAM mask proposal \n(only when SAM is chosen for post process)", | |
minimum=0, maximum=1, value=0.5, step=0.1), | |
gr.Slider(label="minimum prediction threshold for SAM mask proposal \n(only when SAM is chosen for post process)", minimum=0, maximum=1, value=0.03, step=0.01)], | |
outputs="image", | |
title="CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor", | |
description="This is the official demo for CLIP as RNN. Please upload an image and type in the class names (connected by ',' e.g. cat,dog,human) you want to segment. The model will generate the segmentation masks for the input image. You can also adjust the clip thresh, mask thresh and confidence thresh to get better results.", | |
examples=[["demo/pokemon.jpg", "Pikachu,Eevee", 0.6, 0.6, 0, "CRF", 0.95, 0.7, 0.6, 0.01], | |
["demo/Eiffel_tower.jpg", "Eiffel Tower", | |
0.6, 0.6, 0, "CRF", 0.95, 0.7, 0.6, 0.01], | |
["demo/superhero.jpeg", "Batman,Superman,Wonder Woman,Flash,Cyborg", | |
0.6, 0.6, 0, "CRF", 0.89, 0.65, 0.5, 0.03], | |
]) | |
demo.launch(share=True) | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |